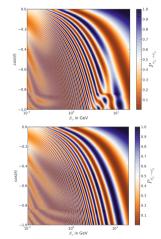
Energy reconstruction and particle identification for atmospheric neurtions using GCNs

American-European JUNO Fall Meeting 2022 - Ferrara


Rosmarie Wirth, University of Hamburg

25.10.2022

Reminder

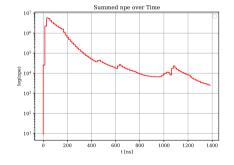
From: Neutrino physics with JUNO, arXiv:1507.05613

Needed Reconstruction and Classification steps:

- Select fully contained events,
- 2 Identify charged current (CC) events,
- 3 Reconstruct energy for selected events,
- 4 Identify neutrino flavour,
- **5** Identify charge of secondary lepton,
- **6** Reconstruction of neutrino direction
 - \rightarrow Shown by Mariam on Monday

Covering:

- Energy reconstruction in NMO region
- Combined NC/CC_e/CC_u identification


Used Data

Using software version J21v1r0-Pre1

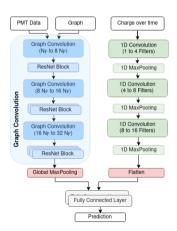
 \rightarrow due to problems with Calib, I use LPMTElecTruth

Used Inputs:

- First hit time per LPMT (FHT)
- Summed npe per LPMT (ΣΝΡΕ)
- Summed npe over time $(\Sigma NPE(t))$
- → currently only LPMTs are considered

3

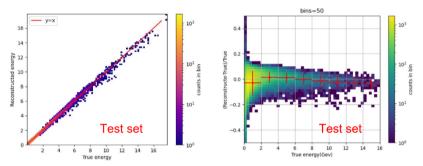
Reconstruction Approach


The graph models the detector geometry.

Inputs: ΣNPE , FHT, $\Sigma NPE(t)$

Loss: MSE

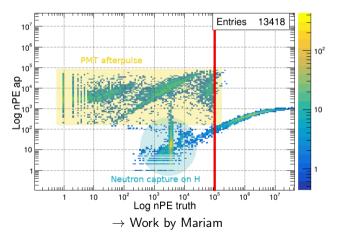
Baysian optimization:


parameter	in range
learning rate	$[10^{-6}, 0.1]$
batch size	[1, 256]
drop out	[0, 0.5]
1D conv. layers	[1,8]
1D conv. kernel size	[3, 5, 7]
GC layers with ResNet	[1,8]
FC layers	[1, 10]

Energy Reconstruction

Chinese results from Collaboration Meeting in July

Chinese results shown in DocDB 8645-v1:

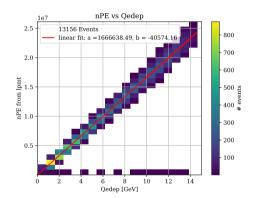

Issue:

- Chinese Group showed 5 % Qedep resolution on linear fit with npe
- Including partially contained events
- Using no readout window selection

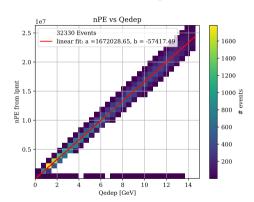
Readout window selection

Rosmarie Wirth

Is readout window selection needed for Qedep reco?

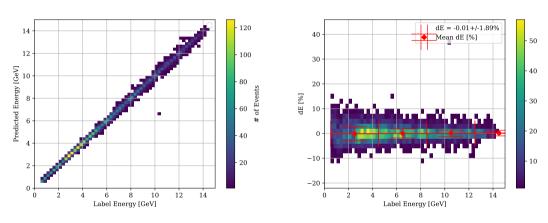


 \rightarrow This selection was used for Edep reconstruction.

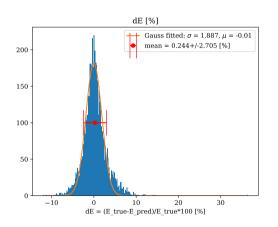

7

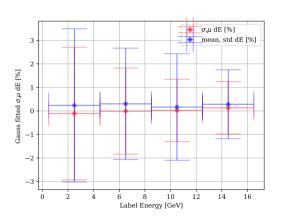
Readout window selection - Comparison

First RW, with FC:



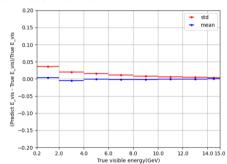
With RW selection, only PC:


Learnings: First RW is sufficient, PC events can be used aswell, cut at npe $< 2 \cdot 10^5$ to exclude outliers

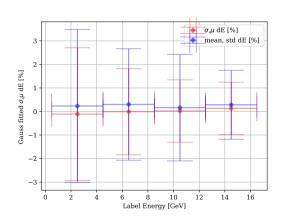

Reconstruction of Qedep in NMO region using GCNs

 \rightarrow Results in resolution of 1.9 %.

Reconstruction of Qedep in NMO region using GCNs



 \rightarrow dE has no gaussian shape, further investigation needed.

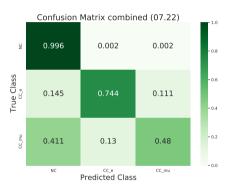

Reconstruction of Qedep in NMO - Comparison

Chinese results

From DocDB 8924-v1
→ overall 1.8 %

My results

 \rightarrow Compatible with results by chinese working group.


Event Classification

Status from Collaboration Meeting in July

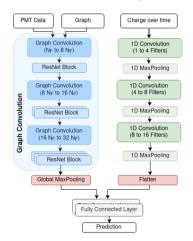
Approach:

- First Classifing CC/NC
 - \rightarrow 1D Convlution on $\Sigma NPE(t)$
 - \rightarrow AUROC = 0.982
 - → Using very strict cut on NC events
- Secondly identifying flavor
 - ightarrow 1D Convolution on $m \Sigma NPE(t)$ and 2D Convolution on nPE projections
 - \rightarrow AUROC = 0.948

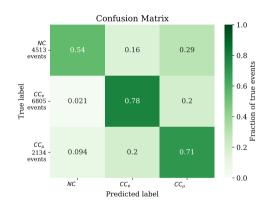
Two step Classification (from July):

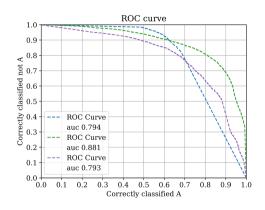
13

Problem: Strict cut on NC/CC resulted in large loss of CC_{μ} events \rightarrow Combining both steps into one.


Reconstruction Approach

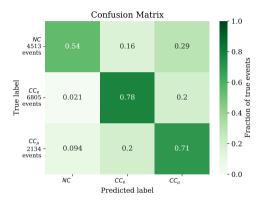
Changeing to GC architecture, identifing NC, CC_e and CC_{μ}


Inputs: ΣNPE , FHT, $\Sigma NPE(t)$

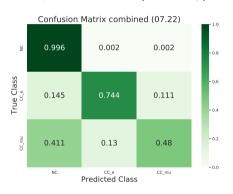

Loss: CrossEntropyLoss **Baysian optimization:**

parameter	in range
learning rate	$[10^{-6}, 0.1]$
batch size	[1, 256]
drop out	[0, 0.5]
1D conv. layers	[1, 8]
1D conv. kernel size	[3, 5, 7]
GC layers with ResNet	[1, 8]
FC layers	[1, 10]

Classification - Current Results



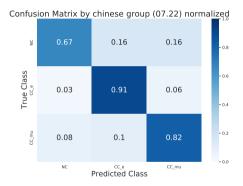
15


ightarrow First proper results for this combined classification.

Classification - Comparison to two step method

Combined Classification:

Two step Classification (from July):


 \rightarrow Improved classification for CC_e and CC_u , on cost of NC due to equal treatment

Classification - Comparison to chinese Results

My results:

Chinese results:

From: Collaboration Mtg in July 2022, DocDB: 8645-v1

Summary

Qedep reco:

- No readoutwindow selection needed
- Performs well
- Compatible with chinese results

Classification:

• Improvement compared to two steps

18

- Promissing first results
- More optimization needed
- \rightarrow Good progress, but still a lot to improve!

Postdoc Position opening @ University of Hamburg

- Looking specificly for a JUNO researcher
- Starting earliest January 2023

 \rightarrow More information comming soon!