NMO sensitivity studies with MASFit

Milano Anti-neutrinos Spectrum Fitter

Elisa Percalli

University of Milan, INFN

JUNO EU+AM Meeting

I've developed a code to generate and fit the antineutrino spectrum for JUNO

It is based on an analytical approach

I've developed a code to generate and fit the antineutrino spectrum for JUNO

It is based on an analytical approach

I've developed a code to generate and fit the antineutrino spectrum for JUNO

It is based on an analytical approach

I've developed a code to generate and fit the antineutrino spectrum for JUNO

It is based on an analytical approach

How does MASFit work?

Input

- Non oscillated reactor spectrum
- Core distances and power
- Oscillation and mass parameters $\sin^2(\theta_{12}), \sin^2(\theta_{13}), \Delta m_{21}^2, \Delta m_{3I}^2$

- Energy resolution (a,b,c)
- Systematic uncertainties

Production of anti-neutrino flux

Using an analytical model it produces an Asimov spectrum of anti-neutrinos

Accounting for detector response

It modifies the spectrum accounting for energy resolution of the detector

Fit on the produced data-set

Output is $\Delta \chi^2 = \chi_{IO}^2 - \chi_{NO}^2$

Anti-neutrinos reactor spectrum

The spectrum is produced using an analytical form (PhysRevD.78.111103):

$$\begin{split} \Phi_{\nu} = & f_{235}{}_{U} \cdot \exp(0.870 - 0.160 \, E_{\nu} - 0.091 \, E_{\nu}^{2}) + \, f_{239}{}_{P_{U}} \cdot \exp(0.896 - 0.239 \, E_{\nu} - 0.0981 \, E_{\nu}^{2}) \\ & + f_{238}{}_{U} \cdot \exp(0.976 - 0.162 \, E_{\nu} - 0.0790 \, E_{\nu}^{2}) + \, f_{241}{}_{P_{U}} \cdot \exp(0.793 - 0.080 \, E_{\nu} - 0.1085 \, E_{\nu}^{2}) \end{split}$$

where $t_{235_U} = 0.58$, $t_{239_{Pu}} = 0.30$, $t_{238_U} = 0.07$, $t_{241_P} = 0.05$ are the fission fraction of the isotopes in the reactor fuel.

Oscillation probability

The total flux will be $N(\bar{\nu}) = \Phi_{\nu} \cdot \sigma_{IBD} \cdot P(\bar{\nu_e} \rightarrow \bar{\nu_e})$

$$\begin{split} P(\bar{\nu_e} \to \bar{\nu_e}) &= 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21}) \\ &\quad - \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31}) \\ &\quad - \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{22}) \end{split} \quad \text{where } \Delta_{ij} = (m_i^2 - m_j^2) \frac{L}{4E_{\nu}}$$

The spectrum with finite energy resolution is obtained through a convolution with the detector response.

Real baseline distribution

Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6	TS-C1	TS-C2	DYB
Baseline [km] Power [GW]						52.19 2.9		52.64 4.6	

I compute then the total spectrum: $N_{\rm tot} = \sum_{i=0}^{9} w_i N_i$, where $w_i = \frac{P_i}{L_i^2}$.

Real baseline distribution

Backgrounds (from Common Inputs)

Total spectrum

Chi squared test

I test JUNO sensitivity to NMO with this procedure:

Assuming one ordering true

I produce a spectrum with this ordering (e.g. Normal Order) It can be an Asimov spectrum or not.

Fit with NO and IO

I compute $\chi^2 = \sum_i^{n_{bin}} \frac{(M_i - T_i)^2}{M_i}$ for both NO and IO theoretical spectrum.

Compute $\Delta \chi^2$

Output is $\Delta \chi^2 = \chi_{IO}^2 - \chi_{NO}^2$

Chi squared test

The full minimizer used is:

$$\begin{split} \chi^2 &= \sum_{i}^{n_{bin}} \left(\frac{(M_i - T_i \cdot (1 + \alpha_C + \sum_r w_r \cdot \alpha_r + \alpha_D) - \sum_B K_i^B \cdot (1 + \alpha_B))^2}{M_i + (T_i \cdot \sigma_{b2b})^2 + \sum_B (\sigma_{shp}^B \cdot K_i^B)} \right) \\ &+ \left(\frac{\alpha_C}{\sigma_C} \right)^2 + \left(\frac{\alpha_D}{\sigma_D} \right)^2 + \sum_r \left(\frac{\alpha_r}{\sigma_r} \right)^2 + \sum_B \left(\frac{\alpha_B}{\sigma_B} \right)^2 + \sum_{\zeta = a,b,c} \left(\frac{\zeta - \zeta_0}{\sigma_\zeta} \right)^2 \end{split}$$

- ullet α_{C} represents a rate uncertainty related to reactors, with $\sigma_{C}=2\%$, and it's correlated among all bins.
- ullet $lpha_r$ models another rate uncertainty related to reactors that is different from core to core, $\sigma_r=0.8\%$ for each core.
- ullet $lpha_D$ represents a rate uncertainty related to detector, with $\sigma_D=1\%$, and it's correlated among all bins.
- ullet $\sigma_{b2b}=1\%$ models a shape uncertainty that affects each bin separately.
- σ_{shp}^{B} represents a shape uncertainty on each background.
- \bullet σ_B represents a rate uncertainty on the background prediction.

What is in MASFit

This is what I've implemented until now in my code:

	MASFit
Real baseline	Antineutrino from 9 reactors weighted by distance and power
Backgrounds	Spectra from the 6 main sources with their predicted rate
Systematic uncertainties	On the predicted rate and shapes of spectra
Detector response	Energy resolution taken into account with a convolution
Statistical fluctuations	Simulated as Poisson fluctuations

Comparison with IHEP Tech Note

I've taken as reference the results shown in the IHEP Tech Note of July 2022 (DocDB:#7494-v8), but I'm still developing some features. Here I show the main differences from it:

	MASFit	IHEP TN		
Binning strategy	Fixed bin width of 20 keV: total 410 bins	Variable bin width: total 360 bins		
LSNL	Not considered	Computed as systematic and in the construction of events		
Signal shape uncertainty (b2b)	Fixed at 1% for each energy	TAO_based (variable with energy)		
χ^2 formula	Neyman	Combined Neyman-Pearson		

Comparison with IHEP Tech Note

I've taken as reference the results shown in the IHEP Tech Note of July 2022 (DocDB:#7494-v8), but I'm still developing some features. Here I show the main differences from it:

	MASFit	IHEP TN		
Binning strategy	g strategy Fixed bin width of 20 keV: Variable bin v total 410 bins total 360 bins			
LSNL	Not considered	Computed as systematic an in the construction of event		
Signal shape uncertainty (b2b)	Fixed at 1% for each energy TAO_based (energy)			
χ^2 formula	Neyman	Combined Neyman-Pearson		
Even thoug	h there are some differences the result	s are comparable .		
$\Delta\chi^2$ (NO)	8.433	8.131		

Input parameters for Asimov data-set

The simulation is run with energies from 1.8 MeV to 10 MeV, divided in 410 bins of 20 keV each. I've considered 6.7 years of data taking, with a duty cycle of 11/12: $\approx 105k$ evt.

Input parameters

Parameter	Value	Free parameter?
$\sin^2(\theta_{12})$	0.304	✓
$\sin^2(\theta_{13,NO})$	0.0222	X
$\sin^2(\theta_{13,IO})$	0.02238	X
Δm_{21}^2	$7.42 \cdot 10^{-5}$	✓
$\Delta m_{31,NO}^2$	$2.515 \cdot 10^{-3}$	✓
$\Delta m_{32,IO}^{2}$	$-2.498 \cdot 10^{-3}$	✓
a(%)	2.614	Pulled
b(%)	0.640	Pulled
c(%)	1.20	Pulled
$\sigma_a(\%)$	0.02	
$\sigma_b(\%)$	0.01	
$\sigma_c(\%)$	0.04	

Oscillation parameters from NuFit 5.1, and energy resolution from Tech Note July 2022 (DocDB:#7494-v8, juno.ihep.ac.cn/cgi-bin/Dev_DocDB/ShowDocument?docid=7494).

Results Asimov data-set

600

500

Results fluctuated data-set

PRELIMINARY RESULTS

 $\Delta\chi^2$ in function of the term a of energy resolution (reference value a=2.614 %)..

 $\Delta\chi^2$ in function of the term b of energy resolution (reference value b=0.640 %).

 $\Delta\chi^2$ in function of the term c of energy resolution (reference value c=1.20 %).

Work in progress

- Adding the liquid scintillator non linearity (both in the energy reconstruction and in the pull terms).
- Testing the code with different chi squared definitions.
- Trying to implement the TAO-based shape uncertainty (dependent from energy).
- I'm doing some studies on the NON Asimov data set.

MASFit

- MASfit is a code that can generate and fit the antineutrinos spectrum in JUNO.
- It is a very flexible code (can be run easily with different parameters).
- It takes both the antineutrino and backgrounds spectra from input, so it easy to use with different models.
- It can be used as a fitter, but I've done also other analysis (correlation, energy resolution).
- Tomorrow I will do a more detailed presentation on how the code works and on my other results.
- The code is uploaded on GitHub with open access, if you want to try it.
 Every feedback is welcome. (https://github.com/elisapercalli/MASFit_2)

Thanks for your attention

Backup

Shape uncertainties (b2b)

Binning strategy IHEP

	Energy interval (MeV)	Bin width (keV)	Number of bins
	(0.8, 0.94)	140	1
	(0.94, 7.44)	20	325
	(7.44, 7.8)	40	9
	(7.8, 8.2)	100	4
	(8.2, 12)	2800	1
Total	(0.8, 12)	-	340

Chi squared definition

$$\begin{split} \chi^2_{\mathrm{Poisson}} &= 2 \sum_{i=1}^n \left(\mu - M_i + M_i \ln \frac{M_i}{\mu} \right), \\ \chi^2_{\mathrm{Neyman}} &= \sum_i^n \frac{(\mu - M_i)^2}{M_i} \,, \\ \chi^2_{\mathrm{Pearson}} &= \sum_i^n \frac{(\mu - M_i)^2}{\mu} \,. \\ \chi^2_{\mathrm{CNP}} &\equiv \frac{1}{3} \left(\chi^2_{\mathrm{Neyman}} + 2 \chi^2_{\mathrm{Pearson}} \right) = \sum_{i=1}^n \frac{(\mu - M_i)^2}{3 / (\frac{1}{M_i} + \frac{2}{\mu})}, \end{split}$$

IBD cross section

The neutrino will interact in the liquid scintillator via the Inverse Beta Decay process: $\nu_e + p \rightarrow n + e^+$. The IBD cross section is approximated, for $E_{\nu} < 300~\text{MeV}$ with this formula:

$$\sigma_{IBD} = 10^{-43} p_e E_e E_\nu^{-0.07056+0.02018 \, ln \, E_\nu \, -0.001953 \, ln^3 \, E_\nu} \, \left[cm^2 \right] \label{eq:dispersion}$$

where $E_e=E_{
u}-\Delta$ is the positron energy and $\Delta=m_n-m_ppprox 1.293\, MeV$.

Total flux of neutrinos

The total flux will be $N(\bar{\nu}) = \Phi_{\nu} \cdot \sigma_{\mathit{IBD}}$

As you can see in the plot it has a peak between 3 MeV and 4 MeV. The flux is normalized to unit area and shown in function of neutrino energy.

Energy resolution

The detector response is approximated as a Gaussian: $G(E_{dep} - E_{vis}, \delta E_{dep}) = \frac{1}{\sqrt{2\pi}\delta E_{dep}} \exp\left(-\frac{(E_{dep} - E_{vis})^2}{2(\delta E_{dep})^2}\right)$ where $E_{dep} = E_{\nu} - 0.8$ is the deposited energy, E_{vis} is the visible energy. The energy resolution on the

deposited energy is:
$$\frac{\delta E_{dep}}{E_{dep}} = \sqrt{\left(\frac{\frac{a}{\sqrt{E_{dep}}}}{\sqrt{E_{dep}}}\right)^2 + b^2 + \left(\frac{c}{E_{dep}}\right)^2}$$

The spectrum with finite energy resolution is obtained through a convolution of the previous spectrum with the detector response ${\sf G}.$

Energy Resolution	$a \ (\times 10^{-2} \sqrt{\text{MeV}})$	$b \ (\times 10^{-2})$	$c~(\times 10^{-2})~{\rm MeV}$	$\tilde{a}(\%)$	At 1 MeV
Calibration paper	2.61 ± 0.02	0.82 ± 0.01	1.23 ± 0.04	3.02	3.00%
J22.1.0-rc0	2.614 ± 0.005	0.640 ± 0.003	1.20 ± 0.01	2.91	2.95%

Real baseline distribution

Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6	TS-C1	TS-C2	TS-C3	TS-C4	DYB	HZ
Baseline [km] Power [GW]								52.64 4.6			215 17.4	

I compute then the total spectrum: $N_{tot} = \sum_{i=0}^{12} w_i N_i$, where $w_i = \frac{P_i}{L_i^2}$.

Correlation on Asimov data-set

Correlation on Asimov data-set

$\sin^2(\theta_{12})$	1.00	0.06	0.03	0.03	0.01	-0.02	-0.03	-0.12
Δm_{21}^2	0.06	1.00	-0.02	0.11	0.03	-0.63	-0.04	-0.03
Δm_{3l}^2	0.03	-0.02	1.00	-0.00	-0.00	0.04	-0.00	-0.00
α_C	0.03	0.11	-0.00	1.00	-0.90	-0.15	0.02	-0.14
α_D	0.01	0.03	-0.00	-0.90	1.00	-0.04	0.00	-0.04
α_{B1}	-0.02	-0.63	0.04	-0.15	-0.04	1.00	-0.03	0.11
α_{B4}	-0.03	-0.04	-0.00	0.02	0.00	-0.03	1.00	-0.66
α_{B5}	-0.12	-0.03	-0.00	-0.14	-0.04	0.11	-0.66	1.00
	$sin^2(\theta_{12})$	Δm_{21}^2	Δm_{3l}^2	α_C	α_D	α_{B1}	α_{B4}	α_{B5}

Other results: dependence from energy resolution prediction

 $\Delta\chi^2$ in function of the predicted energy resolution a_0 in the pull term $\left(\frac{a-a_0}{\sigma_a}\right)^2$. Asimov data-set, stat only.

Dependence from energy resolution prediction

Dependence from energy resolution prediction

 $\Delta \chi^2$ in function of the uncertainty on energy resolution σ_a in the pull term $\left(\frac{a-a_0}{\sigma_a}\right)^2$. Asimov data-set, stat only.

