SHELDON-REWIND REfractive index With INterferometric Devices Measurements of the Liquid Scintillator optical properties

Gioele Reina: <u>gioele.reina@mi.infn.it</u> University of Milan + INFN JUNO meeting EU + AM

Total number of collected photons

Energy

PMTs detected light

Measured times of arrival

Position

JUNO Collaboration effort

Big effort from the JUNO collaboration to collect all these information on the LS with small scale experiments

JUNO Collaboration effort

Big effort from the JUNO collaboration to collect all these information on the LS with small scale experiments

JUNO Collaboration effort

Big effort from the JUNO collaboration to collect all these information on the LS with small scale experiments

SHELDON-REWIND

SHELDON-REWIND: REfractive index With INterferometric Devices

- Refractive Index n
- Group velocity v_g

n: Arrival time measurement + Cherenkov contribution

n: Arrival time measurement + Cherenkov contribution

n: Arrival time measurement + Cherenkov contribution

For this measure we use a **refractometer**:

• Laser source with incident angle θ_i on empty cuvette (width s)

n: Arrival time measurement + Cherenkov contribution

- Laser source with incident angle θ_i on empty cuvette (width s)
- Detect light with CCD camera

n: Arrival time measurement + Cherenkov contribution

- Laser source with incident angle θ_i on empty cuvette (width s)
- Detect light with CCD camera
- Fill cuvette with LS

n: Arrival time measurement + Cherenkov contribution

- Laser source with incident angle θ_i on empty cuvette (width s)
- Detect light with CCD camera
- Fill cuvette with LS
- Different refractive angle with/without LS

n: Arrival time measurement + Cherenkov contribution

- Laser source with incident angle θ_i on empty cuvette (width s)
- Detect light with CCD camera
- Fill cuvette with LS
- Different refractive angle with/without LS
- Measure the displacement of the beam propagation d_{ls}

n: Arrival time measurement + Cherenkov contribution

- Laser source with incident angle θ_i on empty cuvette (width s)
- Detect light with CCD camera
- Fill cuvette with LS
- Different refractive angle with/without LS
- Measure the displacement of the beam propagation d_{LS}

$$d_{LS} = \frac{s \sin \left[\theta_i - \arcsin(\frac{n_{air}}{n_{LS}} \sin \theta_i)\right]}{\cos \left[\arcsin(\frac{n_{air}}{n_{LS}} \sin \theta_i)\right]}$$

n: Arrival time measurement + Cherenkov contribution

Testing at several wavelengths

• He-Ne: 633 nm

• Ar: 514.5 nm

• Yb: 258 nm, 345 nm, 517 nm, 1035 nm

In order to get **n** as a function of wavelengths

Cherenkov radiation

$$\frac{\partial^2 N}{\partial x \partial \lambda} = \frac{2\pi\alpha}{\lambda^2} (1 - \frac{1}{\beta^2 n^2(\lambda)})$$

OUR MEASUREMENT

Air

Measure the position of the beam on the ccd

H₂O - Calibration

Measure the position of the beam on the ccd \longrightarrow \mathbf{d}_{H20}

H₂O - Calibration

Measure the position of the beam on the ccd \longrightarrow \mathbf{d}_{H20}

$$d_{H2O} = \frac{s \sin \left[\frac{\theta_i}{n} - \arcsin \left(\frac{n_{air}}{n_{H2O}} \sin \frac{\theta_i}{n} \right) \right]}{\cos \left[\arcsin \left(\frac{n_{air}}{n_{H2O}} \sin \frac{\theta_i}{n} \right) \right]}$$

Extract value of θ_i with higher precision

LS

Measure the position of the beam on the $\operatorname{ccd} \longrightarrow \mathbf{d}_{\mathsf{LS}}$

LS

Measure the position of the beam on the $\operatorname{ccd} \longrightarrow \mathbf{d}_{\mathsf{LS}}$

STATUS

Done

 The LabView acquisition code and the codes for the analysis are ready

Done

- The LabView acquisition code and the codes for the analysis are ready
- We made a first test measurement for the refractive index of LAB only using He-Ne source

Done

- The LabView acquisition code and the codes for the analysis are ready
- We made a first test measurement for the refractive index of LAB only using He-Ne source

Problems

Displacement of cuvette during fill/unfill of H₂O and LS (solved)

Done

- The LabView acquisition code and the codes for the analysis are ready
- We made a first test measurement for the refractive index of LAB only using He-Ne source

Problems

Displacement of cuvette during fill/unfill of H₂O and LS (solved)

Done

- The LabView acquisition code and the codes for the analysis are ready
- We made a first test measurement for the refractive index of LAB only using He-Ne source

- Displacement of cuvette during fill/unfill of H₂O and LS (solved)
- Make sure that CCD is perpendicular to the beam (in progress):

Done

- The LabView acquisition code and the codes for the analysis are ready
- We made a first test measurement for the refractive index of LAB only using He-Ne source

- Displacement of cuvette during fill/unfill of H₂O and LS (solved)
- Make sure that CCD is perpendicular to the beam (in progress): use two slits between cuvette and ccd

Done

- The LabView acquisition code and the codes for the analysis are ready
- We made a first test measurement for the refractive index of LAB only using He-Ne source

- Displacement of cuvette during fill/unfill of H₂O and LS (solved)
- Make sure that CCD is perpendicular to the beam (in progress): use two slits between cuvette and ccd
- Make sure that we have homogeneity of cuvette walls (in progress):

Done

- The LabView acquisition code and the codes for the analysis are ready
- We made a first test measurement for the refractive index of LAB only using He-Ne source

- Displacement of cuvette during fill/unfill of H₂O and LS (solved)
- Make sure that CCD is perpendicular to the beam (in progress): use two slits between cuvette and ccd
- Make sure that we have homogeneity of cuvette walls (in progress): mount cuvette on a sliding plate

Done

- The LabView acquisition code and the codes for the analysis are ready
- We made a first test measurement for the refractive index of LAB only using He-Ne source

- Displacement of cuvette during fill/unfill of H₂O and LS (solved)
- Make sure that CCD is perpendicular to the beam (in progress): use two slits between cuvette and ccd
- Make sure that we have homogeneity of cuvette walls (in progress): mount cuvette on a sliding plate
- Unable to access the laboratory (in progress)

SHELDON-REWIND: REFRACTIVE INDEX FIRST RESULT

Before solving the technical problems and before the maintenance works at the laboratory we made a first test measurement of the refractive index of LAB only using the He-Ne source (λ = 633 nm)

λ (nm)	633		
s (cm)	0.966 ± 0.003		
θ _i (rad)	0.816 ± 0.001		
d _{H2O} (cm)	0.270963 ± 0.000051		
d _{LAB} (cm)	0.32550 ± 0.00046		

 $\mathbf{n}_{LAB} = 1.481 \pm 0.002$

SHELDON-REWIND: NEXT STUDIES

NEXT STUDIES

SHELDON-REWIND: REFRACTIVE INDEX WITH REFRACTOMETER

- We will solve the technical problems and measure again the refractive index of LAB
- We will complete our measurements for the refractive index of the LS with all the sources
- We will bring our setup to LASA (Laboratory of Accelerator and Applied Superconductivity) where there is the Yb source

SHELDON-REWIND: GROUP VELOCITY WITH INTERFEROMETER

 v_a : Arrival time measurement Testing with several wavelengths Cuvette in one arm of interferometer with/without LS Interference fringes displacement V

CONCLUSION

REFRACTIVE INDEX

- The experimental setup is installed (✓)
- The acquisition and analysis codes are ready < ✓
- We did a first test measure for $\mathbf{n}_{\mathsf{LAB}}$ (\checkmark)
- We are taking care of the technical problems (in progress)
- We are waiting to access the laboratory (in progress)

GROUP VELOCITY

- We have to install the setup (in progress)
- We have to write the code for DAQ and analysis (in progress)

Will update you asap!

Thank you for your attention

BACKUP SLIDES

JUNO DESIGN - Central Detector

JUNO DESIGN - Support Structure

June 2022

JUNO DESIGN - Veto System

JUNO GOALS

Neutrino Mass Ordering (NMO)

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\rm PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \qquad \qquad \begin{aligned} \mathbf{m_i} &= \text{neutrino mass} \\ \mathbf{\Delta^2 m_{ij}} &= \mathbf{m_i}^2 - \mathbf{m_j}^2 \end{aligned}$$

- Neutrino Oscillations Parameters: θ_{12} , $\Delta^2 m_{21}$, θ_{13} , $\Delta^2 m_{23}$
- Solar Neutrino Spectroscopy
- Core-collapse Supernovae neutrinos and geoneutrinos
- Lower limit to τ_p

BACKUP

PONTECORVO-MAKI-NAKAGAWA-SAKATA mixing matrix

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad c_{ij} \equiv \cos \theta_{ij}$$

$$s_{ij} \equiv \sin \theta_{ij}$$

What we know:

$$\left| \Delta m_{3l}^2 \right| \sim 2.5 \cdot 10^{-3} \text{ eV}^2$$

 $\Delta m_{21}^2 \sim 7.4 \cdot 10^{-5} \text{ eV}^2$
 $\sin^2 \theta_{12} \sim 0.3$
 $\sin^2 \theta_{13} \sim 0.7$

What we don't know:

- Mass ordering
- Absolute values of neutrino masses (m₁, m₂, m₃)

$$\begin{split} \mathcal{P}(\overline{\nu}_{e} \to \overline{\nu}_{e}) &= 1 - \sin^{2} 2\theta_{12} \, c_{13}^{4} \, \sin^{2} \Delta_{21} - \sin^{2} 2\theta_{13} \, \left(c_{12}^{2} \sin^{2} \Delta_{31} + s_{12}^{2} \sin^{2} \Delta_{32} \right) & \Delta_{ij} \equiv \Delta m_{ij}^{2} L/(4E) \\ &= 1 - \sin^{2} 2\theta_{12} c_{13}^{4} \sin^{2} \Delta_{21} - \frac{1}{2} \sin^{2} 2\theta_{13} \, \left(\sin^{2} \Delta_{31} + \sin^{2} \Delta_{32} \right) \\ & - \frac{1}{2} \cos 2\theta_{12} \sin^{2} 2\theta_{13} \sin \Delta_{21} \sin(\Delta_{31} + \Delta_{32}), \end{split}$$

	Central Value	PDG2020	$100 \mathrm{days}$	6 years	20 years
$\Delta m_{31}^2 \ (\times 10^{-3} \text{ eV}^2)$	2.5283	±0.034 (1.3%)	$\pm 0.021 \ (0.8\%)$	±0.0047 (0.2%)	±0.0029 (0.1%)
$\Delta m_{21}^2 \ (\times 10^{-5} \text{ eV}^2)$	7.53	$\pm 0.18 (2.4\%)$	$\pm 0.074 (1.0\%)$	$\pm 0.024 (0.3\%)$	$\pm 0.017 (0.2\%)$
$\sin^2 \theta_{12}$	0.307	± 0.013 (4.2%)	$\pm 0.0058 (1.9\%)$	$\pm 0.0016 (0.5\%)$	$\pm 0.0010 (0.3\%)$
$\sin^2 \theta_{13}$	0.0218	± 0.0007 (3.2%)	$\pm 0.010 (47.9\%)$	$\pm 0.0026 \ (12.1\%)$	± 0.0016 (7.3%)

SOLAR NEUTRINOS

LIQUID SCINTILLATOR

Recipe: LAB + 2.5 g/l PPO + 3 mg/l bis-MSB

Charged particle passes through the LS →its molecules get excited

Transition from excited levels to the ground state

Typical τ : few ns to few μ s Light-yield: 10^4 ph/MeV

Fluorescence light emission

NEUTRINO INTERACTIONS

Antineutrinos

Neutrinos

Elastic Scattering

$$\nu + e^{-} \rightarrow \nu + e^{-}$$

Detection of light by PMTs

LIQUID SCINTILLATOR - EMISSION SPECTRA

BACKUP

JUNO DESIGN

CENTRAL DETECTOR

Acrylic Vessel 35.4 m diameter 265 spherical acrylic panels

NEUTRINO DETECTION

ENERGY MEASUREMENT

SHELDON - REWIND

SHELDON - REWIND: GROUP VELOCITY WITH INTERFEROMETER

Useful link to check known refractive index of several material as a function of temperature, pression, wavelength, humidity and so on:

refractiveindex.info

SHELDON-REWIND: REFRACTIVE INDEX WITH REFRACTOMETER

n: Time measurement + Cherenkov contribution

Testing at several wavelengths

• He-Ne: 633 nm

• Ar: 514.5 nm

• Yb: 258 nm, 345 nm, 517 nm, 1035 nm

Different refractive angle with/without LS

Beam propagation displacement

n

SHELDON-REWIND: REFRACTIVE INDEX WITH REFRACTOMETER LabView

SHELDON - REWIND: GROUP VELOCITY WITH INTERFEROMETER

$$v_g = rac{c}{n_g}$$
 $n_g(\lambda) = n(1 - rac{\lambda}{n} rac{dn}{d\lambda})^{-1}$ $dn_g = d + \Delta$ $n_g = 1 + rac{\Delta}{d}$