

Update on SHELDON laboratory results

JUNO EU-AM collaboration meeting in Ferrara

Davide Basilico, Marco Beretta, Augusto Brigatti, Barbara Caccianiga,
Federico Ferraro, Cecilia Landini, Paolo Lombardi, Alessandra Re, Gioele Reina

Index

- The SHELDON project

- Measurement of fluorescence parameters
- Separation of the Cherenkov contribution
- Evaluation of the Cherenkov contribution
- Conclusion

The SHELDON project: scientific goals

Separation of cHErenkov Light for Directionality Of Neutrino
 @ UNIMI - Milan
 Two main goals:

Accurate measurement of fluorescence time distribution (fluorescence parameters)

Study of the Cherenkov radiation in the JUNO LS

Impact on the JUNO experiment:

- event reconstruction
- particle identification via PSD
- improved description of fluorescence parameters in the JUNO MC

Impact on the JUNO experiment:

- Improved understanding of energy response
- Possible reconstruction of the direction of incident neutrino

SHELDON's laboratory @ UNIMI

JUNO liquid scintillator: emission

Emission spectrum

Measured @ Università degli Studi di Perugia thanks to: Fausto, Aldo e Catia

JUNO liquid scintillator: absorption

Measured using a spectrophotometer in Milan

SHELDON: timing measurement setup

Components of the setup:

JUNO LS sample
2 PMTs, one weakly coupled
Neutral filter
2 Digitizers ($5 \mathrm{GS} / \mathrm{s}$ each)
LabVIEW DAQ software

Technique:

Time-Correlated Single Photon Counting

The SHELDON project: Impulse Response Function

SHELDON: veto system

Components of the setup:
2 plastic scintillators EJ 200
Linear Edge Discriminator
Coincidence Unit
3rd Digitizer (5 GS/s)
Same LabVIEW DAQ software

Delay in delivery of components \rightarrow installed in the last two weeks

Index

- The SHELDON project
- Measurement of fluorescence parameters
- Separation of the Cherenkov contribution
- Evaluation of the Cherenkov contribution
- Conclusion

Measurement of fluorescence

Alpha source fluorescence time distribution

Fluorescence time distribution obtained using an alpha source

Same experimental setup used in the IRF measurement

The duration of the data acquisition is 10 days to obtain 10^{6} events

The light emission is not a prompt emission

Fit model: four exponential decay

To describe the
fluorescence time profile 4
components are needed
The fourth becomes dominant starting from $\sim 300 \mathrm{~ns}$

Our DAQ time window is 1600 ns

$$
F_{\text {fluo }}(t)=N \sum_{d=1}^{4} \frac{q_{d}}{\tau_{d}-\tau_{r}}\left(e^{-t / \tau_{d}}-e^{-t / \tau_{r}}\right)
$$

Measurement of fluorescence parameters: α-source

Measurement of fluorescence parameters: α-source

JUNO EU-AM 24-25 October

Measurement of fluorescence parameters: α-source

Measurement of fluorescence: preliminary results

Measurement of fluorescence time distribution using three different radioactive sources.

The three curves have different tails.

We can study how our parameters impact on the JUNO MC simulation
-> Marco Malabarba's talk

	τ_{1} [ns]	τ_{2} [ns]	τ_{3} [ns]	τ_{4} [ns]
α	4.79 ± 0.02	20.86 ± 0.39	103.8 ± 2.4	633 ± 14
p	4.60 ± 0.02	18.99 ± 0.27	108.2 ± 2.1	691 ± 12
e^{-}		$\begin{gathered} 1511+022 \\ \mathrm{C}_{2}^{15} \mathrm{q}_{2}[\%] \end{gathered}$	$\begin{aligned} & 850 \pm 20 \\ & N_{q_{3}}[\%] \end{aligned}$	$=\stackrel{549 \pm 9}{q_{4}}$
α	55.97 ± 0.32	23.15 ± 0.23	13.17 ± 0.16	8.50 ± 0.42
p	62.02 ± 0.27	21.07 ± 0.21	9.94 ± 0.10	6.97 ± 0.36
e^{-}	65.02 ± 0.36	23.72 ± 0.28	7.26 ± 0.10	4.27 ± 0.47

Measurement of fluorescence: preliminary results

Measurement of fluorescence time distribution using three different radioactive sources.

The three curves have different tails.

We can study how our parameters impact on the JUNO MC simulation -> Marco Malabarba's talk

	τ_{1} [ns]	τ_{2} [ns]	τ_{3} [ns]	τ_{4} [ns]
α	4.79 ± 0.02	20.86 ± 0.39	103.8 ± 2.4	633 ± 14
p	4.60 ± 0.02	18.99 ± 0.27	108.2 ± 2.1	691 ± 12
e^{-}	$\begin{gathered} 3.96+0.02 \\ -\mathrm{w}^{2}+4+\mathrm{i} \\ q_{1}[\%] \end{gathered}$	$\begin{gathered} 1511+022 \\ \left.{ }_{4}^{1-9}+\%\right] \\ q_{2}[\%] \end{gathered}$		$=5 \stackrel{549 \pm 9}{q_{4}} \underset{[\%]}{ }$
α	55.97 ± 0.32	23.15 ± 0.23	13.17 ± 0.16	8.50 ± 0.42
p	62.02 ± 0.27	21.07 ± 0.21	9.94 ± 0.10	6.97 ± 0.36
e^{-}	65.02 ± 0.36	23.72 ± 0.28	7.26 ± 0.10	4.27 ± 0.47

We started the measurement campain with veto and then we will share final results to the collaboration.

Index

- The SHELDON project
- Measurement of fluorescence parameters
- Separation of the Cherenkov contribution
- Evaluation of the Cherenkov contribution
- Conclusion

Cherenkov contribution at different wavelengths

Cherenkov light can be separated from scintillation light thanks to its spectral features.

The JUNO LS emission spectrum has a maximum at 400 nm

The Cherenkov spectrum (not to scale) decreases as $1 / \lambda^{2}$ and extends above the scintillation spectrum.

Using appropriate optical filters it is possible to select the light in a desired wavelength interval, separating scintillation and Cherenkov light.

Cherenkov contribution at different wavelengths

Cherenkov contribution at different wavelengths

Index

- The SHELDON project
- Measurement of fluorescence parameters
- Separation of the Cherenkov contribution
- Evaluation of the Cherenkov contribution
- Conclusion

Evaluation of the Cherenkov contribution

Using the new measurement of the refractive index
-> Gioele Reina's Talk

And a Geant4 simulation of our setup developed by

Gioele Reina
(master student @ UNIMI)

Evaluation of the Cherenkov contribution

Using the new measurement of the refractive index
-> Gioele Reina's Talk

And a Geant4 simulation
of our setup
developed by
Gioele Reina

(master student @ UNIMI)

Evaluation of the Cherenkov contribution

We will measure the Cherenkov contribution in the JUNO LS comparing real data with simulations

Index

- The SHELDON project
- Measurement of fluorescence parameters
- Separation of the Cherenkov contribution
- Evaluation of the Cherenkov contribution
- Conclusion

Conclusions (1)

- We developed an experimental setup for the fluorescence time measurement
- We produced the JUNO liquid scintillator and measured the emission spectrum
- We measured the fluorescence distribution with three radioactive sources
- We are improved the setup with a muon veto
- We are measuring the Cherenkov contribution at different wavelength

JUNO EU-AM 24-25 October

 marco.beretta@unimi.it

Conclusions (2)

- we stress the need of creating a database with the different sets of parameters and an ID for each set (to be included in SNIPER) \rightarrow talk to AFG soon
- we will discuss the consistency of our analysis with other people involved in similar measurements \rightarrow during this meeting
- we plan to finalize a paper on this measurements \rightarrow in the very next weeks

High accuracy measurement of fluorescence parameters in liquid organic scintillators

Article info	ABSTRACT
Keywords: scintillation, fluorescence, Cherenkov PSD	Liquid organic scinililaturs are widely wsed ine experimenal nuclear and paricicle physics thanks so their relatively high light yield and good timing properties. Along with scintillation light, a charged particle particle moves in the medium, it can affect the measurenent of the characerisitic fluorescence time Here we prove that the contribution of Cherenkor light, as well as a sufficient duration of the acquisition window must be considered to perform accurate measurements of the fluorescence times and their relative importance. Moreover. we report on a new measurement of the parameters of the scinitilator mixurur that will be besd in the JUNO experiment with a thoroughly characterized small- scale setup. Our study will allow inproved Pulse Shape Discrimination in JUNO as well as in other experiments using LAB- based liquid organic scintillators.

1. Introduction

Scintillation consists in a process that converts into light part of the energy deposited by charged particles in the scintiliator. In fact, as a charged particle moves in an organic bonds of solvent mes excitation of elecirons in the π populate different excited states, that quickly decay nonradiaitively to the first excited singlet state etypical lifetime of the order of a ps). The first excited singlet state then decays to the ground state emitting fluorescence light (typical lifetime of the order of few ns to hundreds of nss. The first excited singlet state can also decay to the first excited triplet state
which subsequently decays to the ground state emitting phosphorescence light (typical lifetime of the order of ms). Alternatively, excited states can relax to the ground state non-radiatively, quenching the emission of light. Molecules in the first excited triplet state can also go back to the first excited singlee state beca
To prevent self-absorption of scintillation light caused by the superposition of emission and absorption spectra of the organic solvent, a second component usually called "scintillation fluor" is added in small fractions. The solvent
transfers energy to the fluor (mainly non-ratiotively), which transfers energy to the fluor (mainly non-radiatively), which
subsequently emits fluorescence light in a region outside the absorption spectrum of the solvent. To further improve transparency in large detectors and provide a better match with photomultiplier tubes (PMTs), a third component can be added in even smaller fractions, the wavelength shifter. As a result of the excitation and de-excitation of the com-
ponents in the mixture, the time distribution of scintillation light can be effectively described by the linear combination of a certain number of exponential contributions, each one with a characteristic decay time and a relative weigh

"Coressponding author ORCDD(s):

Apart from scintillation light, a charged particle moving in the scintillator can also cause the emission of Cherenkov he refractive index of the secitillator Cherenkov light is emitted instantaneously, is directional and its spectrum decreases as λ^{-2} (where λ is the wavelength). A large part of this light is absorbed by the scintillator and subsequently re-emitted isotropically in the form of fluorescence light. absorthetions spectrum of the scintillator does not get absorbed and contributes to the very first part of the time distribution of emitted light, as already pointed out in []. Neglecting the contribution of Cherenkov light causes
an error in the determination of the timing properties of the
tcintlator and does not allow to exploit its full potential scintillator and does not allow to exploit its full potential. information on the direction of scattered electrons, which is correlated to the direction of the incoming neutrino.

2. Composition and properties of the liquid

 scintillatorsLinear alkybenzene (LAB) has become one of the best available solvents lately, thanks to its good safecty features, high transparency, material compatibility and low cost. experiment based liquid scintillators in a new generation of rare event experiments such as JUNO [], SNO $+\square$ and SABRE $[$. 2,5-diphenyloxazole (PPO) was chosen as primary scinof $2.5 \mathrm{~g} / \mathrm{L} .2 \mathrm{~g}$ these new experiments with a concentration and SABRE will also use $1,4-$ - is $(2$-methylsyryryl) bezzen (bis-MSB) with concentrations of $3 \mathrm{mg} / \mathrm{L}$ and $15 \mathrm{mg} / \mathrm{L}$ espectively to further increase the light yield and match he emission spectrum of the scintillator with the efficiency curve of the PMTs.

Table 1
Composition of LAB-based scintillators used in past, present

Mixture	PPO (g/L)	bis-MSB $(\mathrm{mg} / \mathrm{L})$
DB/SABRE	3	15
JUNO	2.5	3
SNO+	2	-

The composition of the scintillator mixture determine is properties, inclucing the time distribution of fluorescenc light, the characteristic time of the different exponentia contributions used to describe fluorescence light and their relative importance.

In his work we report on the measurements obtained for he scintillator mixtures summarized in table 1 The mixture were prepared starting from the single components, mixing them in the appropriate volumetric fractions. To prepar a suitably small volume of scintillator to be used in ou with a precision scale and directly added to the LAB. To in clude bis-MSB in the mixtures, a master solution containing bis-MSB and LAB (1:10000) was prepared to control the amount of bis-MSB with higher accuracy and was added to the mixtures to reach the correct volume of LAB and the
desired amount of bis-MSB. A complete description of the procedures followed to prepare the scintillator mixtures can be found in Beretta (2022).

3. Emission and absorption spectr

3.1. Setup
emission spectra of the scintillator mixtures was measured using a Spex Fluorolog-2 1680/1 spectrofluo imeter, controlled by the Spex Datamax spectroscopy softRanucci and Romani (2013). The excitation light was pro Ranucci and Romani (2013). The excitation light was pro oblain a beam with wavelength of 265 nm on the sample. Both the excitation and the emission monochromators were set to have a bandwidth of 1.5 nm
The measurements were performed in front-face geometry at an angle of 22° with respect to the incident ligh
direction. Inghis configuration the incidenc length of 265 nm is absorbed in about 10 micrometers and self-absorption of fluorescence light emitted in the direction of the detector is negligible.

The quantum efficiency of the detector is taken into bration standard in the spectral region between 250 cali 600 nm . Each point in the spectrum is normalized to the excitation light intensity, thanks to a beam splitter and reference detector.

The absorption spectra of the scintillator mixture was with a LSE-701 Single Position Long Path Length (maximum: 100 mm) Cell Holder.

The absorption of the scintillator mixture was measured with respect to a blank obtained with hexane.
3.2. Measurements

We measured the emission spectrum of the JUNO liquid scintillator between 250 nm and 600 nm . The resulting spectrum is visible (in black) in figure 1. In the same figure
are visible the emission spectra of pure are visible the emission spectra of pure LAB (in blue), of
$\mathrm{LAB}+2.5 \mathrm{~g} \mathrm{LPPO}$ (in red) and of $\mathrm{LAB}+0 . \mathrm{gkg}$. $\mathrm{LAB}+2.5 \mathrm{~g} / \mathrm{L} \mathrm{PPO}$ (in red) and of $\mathrm{LAB}+0.1 \mathrm{~g} / \mathrm{kg}$ bis-MSB (in green). All of the spectra in figure 1 are normalized to the
maximum to better appreciate the differences in their shape The peak at 265 nm is caused by diffusion of incident light

Emission spectra

Figure 1: Emission spectra of the scintillator mixture and of Figure 1: Emissio
its components.
and the peak at 530 nm is due to the second harmonic present in the beam of incident light.
As of today, this is the first measurement of the emission spectrum of the JUNO liquid scintillator mixture. This spec trum is very similar to the emission spectrum of bis-MSB however, some other peculiar features are present at 400 nm
and below. In particular, the peak at 400 nm is relatively more important in this sp are present at about 340 nm and 360 nm that are not visiblc in the bis-MSB emission spectrum. The peak
The peak at about 280 nm , due to light emission by LAB vanishes when PPO is present in the mixture because of nm in the spectrum of the mixture composed by LAB +0.1 g / kg bis-MSB (in green in figure 1) is a residual of light emission by LAB, partly absorbed by bis-MSB.
emission by LAB, partly absorted by bis-MSB.
The pakk at 530 nm in all Ispecta correspond to the
second harmonic in the excitation beam and is not a feature of the scintillator:
We measured the absorption spectrum of different samples, as reported in figure 2: pure LAB (in blue), LAB +2.5 $\mathrm{g} / \mathrm{L} \mathrm{PPO}$ (in red), $\mathrm{LAB}+0.1 \mathrm{~g} / \mathrm{kg}$ bis-MSB (in green) and the mixture that will be used in JUNO, LAB $+2.5 g / \mathrm{L}$ PPO $+3 \mathrm{mg} / \mathrm{L}$ bis-MSB (in black). All of the absorption spectran
in figure 2 have been shifted to have the same minimum.
vette and the PMT to further reduce the optical coupling to he liquid scintillator. To ensure the single-photon condition we always used a NDUV13A neutral density optical filter optical density: 1.3).
The cuvette is enclosed in an aluminum frame and a cap coses its open face on top. The cap is provided with a needle
hat goes all the way into the liquid scintillator and allows hat goes all the way into the liquid scintillator and allows fective in reducing quenching caused by oxygen dissolved in liquid scintillators Lombardi et al. (2013). Gaseous nitrogen
comes to the needle from a small tube provided with an comes to the needle from a small tube provided with an
entrance valve, bubbles in the liquid scintillator and gets out of the cuvette passing through a small hole and a tube with an exit valve.
The blackbox is positioned between two plastic scintillator modules placed immediately above and below the
blackbox to veto the events caused by cosmicray indued blackbox to veto the events caused by cosmic-ray induced
muons passing through them. Each module is composed by a slab of EJ-200 ($500 \mathrm{~mm} \times 500 \mathrm{~mm} \times 20 \mathrm{~mm}$) wrapped in reffective foil, enclosed in a black vinyl light-tight container and coupled to a 25 mm PMT at one angle
Signals coming from the PMTs facing the liquid scintillator are digitized by 2 separate NI PXIe-5162 digitizers
$(10 \mathrm{bit}$
$5 \mathrm{GS} / \mathrm{s}, 1.5 \mathrm{GHz})$ included in a NI PXIe-1075 chassis controlled by a NI PXIe-8135 embedded controller. Signals coming from the veto modules pass through a NIM coincidence unit whose output is digitized by a third NI
PXIe-5162. The digitizers are operated in interleaving mode PXIe-5162. The digitizers are operated in interleaving mode
to fully exploit their capabilities and use the highest possible sampling rate.
4.1.1. Impulse Response Function

The Impulse Response Function (IRF) of the entire 75 ps pulse width and a waveleg a pulsed laser source with coupled to an optical fiber entering the black box, terminated with a Teflon diffuser. The light scattered from the diffuser, conveniently attenuated by means of some optical filters, mimicks the emission from the scintilator and is sufficienly coupled PMT, yet sufficiently bright to cause the stronglycoupled PMT to trigger the acquisition. To better emulate the effect of refraction and reffections, the diffuser was placed inside a cuvette containing pure LAB and covered with an aluminum foil, so that the conditions were as close as
possible to the real measurement 3 a. Considered the dead time of the digitizers, the period of the laser ($20 \mu \mathrm{~s}$) has been chosen to have the highest counting rate.
We measured the IRF placing the diffuser in three different positions inside the cuvette to study the different effect of refraction and reflections 3 b .

The 1 RF has been fitted using a superposition of 7 Gaushe most simple and the most accurate description of its different features.

(a) Beta
4.2. Measurement of the fluorescence tim distribution
The time distribution of the fluorescence light emitted by the scintillator can be described by the superposition of som tion window, we modeled the time distribution of emitte light with four effective components. Such a choice ha already been motivated in previous literature, which mostly describes the LAB-based scintillators with four exponential components? Thanks to the high resolution of our setup and this had to be taken into account in our analysis. The resulting distribution can be written as

$$
F_{f i t}=N \sum_{d=1}^{4} \frac{q_{d}}{\tau_{d}-\tau_{r}}\left(e^{-\frac{-\tau_{0}}{\tau_{d}}}-e^{-\frac{t \tau_{0}}{\tau_{r}}}\right) \Theta\left(t-t_{0}\right)(1
$$

where N is a normalization constant, q_{d} and τ_{d} are the relative weights (also called fractions hereafter) of the d-th component and its characteristic decay times, τ_{r} is the char Θ is the step function that marks the start of the fluorescenc time profile. The normalization of the fourth componen requires a particular treatment due to the acquisition time window, which is limited to 1.6μ s. This limitation implies truncation in the light collection, so the normalization of th fourth exponential component $\frac{1}{\tau_{4}-\tau_{t}}$ needs to be corrected:

$$
q_{4}=\frac{1-\sum_{d=1}^{3} q_{d}}{1-e^{-\frac{\tau_{u}-\tau_{4}}{\tau_{4}}}}
$$

where $t_{t e}=1600$ ns is the length of the DAQ time window The light uncollected because of the finite duration of ou acquisition window is about 9.1% of the fourth component
To take into account the finite resolution of the setup is necessary to convolve the fluorescence model described is equation 1 with the IRF
$(f * g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau$ (3)

DecayTime

(b) Alph

We note that self-absorption of emitted light is nonnegligible below 400 nm . This motivates the front-face would otherwise be affected by absorption, resulting both in a underestimation of the spectrum in the region at shorter wavelength.

4. Timing properties

Once the emission and absorption spectra of the liqinvestigated in a dedicated setup, using radioactive sources Charged particles travelling in the scintillator do not only the emission of Cherenkov light, depending on their velocity and the refractive index of the scintillator. If Cherenkov measurement of tits contribution must be considered in the Here we describe the techniques that we used to separate and study the contribution of Cherenkov light thanks to its timing features.
The cime distribution of fluorescence light emitted by the different exponential distributions with a chaperposition of constants and relative weigth BIRKS (1964).
4.1. Setup composed by a cuvette made of optical glass filled with the inside a black box. One PMT (model R1828-01) is part of an assembly (H1949-51) including a magnetic shield and faces the cuvette in close geometry, so that its optical coupling to
the liquid scintillator is very strong. A second PMT (model R4220P) is a side-window PMT optimized for single-photon geometry and different filters can be positioned between the
\qquad

Thanks to the linearity of the operation, the analytic convolution of the IRF with the fluorescence model in equation
gives gives
$F_{f l u o}(t)=N \sum_{d=1}^{4} \sum_{j=1}^{7} N_{d} N_{j}\left(e^{-t / \tau_{d}}-e^{-t / r_{r}}\right) * G_{j}\left(t ; \mu_{j}, \sigma_{j}\right)$
where the N_{d} is the normalization of the fluorescence component, as discussed before, the N_{j} are the normalized we number of entries in the histogram.
Cherenkov radiation is emitted with characteristic time shorter than the resolution of our setup so we model it as
an impulse distribution. Also the Cherenkov contribution has to be convolved with the IRF and the time distribution of emitted light is a weighted sum of fluorescence 1 and Cherenkov light:
$F_{\text {Toutil }}(t)=\left[N_{C h} \delta\left(t, t_{0}\right)+\left(1-N_{\text {Ch }}\right) F_{\text {Fluo }}(t)\right] * \operatorname{IRF}(t)$
where $N_{C h}$ is the fraction of Cherenkov light with respect to iotal emission (Cherenkov and fluorescence)

4.3. Uncertainties
 5. Pulse Shape Discrimination

6. Conclusions

Acknowledgement
References
 of the JUNO scintililator. Master's thesisi. Univeristy of Milan.

(c) Alpha

Figure 4: Caption

Figure 5: BlaBla
.

pusse shape discrimination of liquid scinitilators sased on novel sol-
vents.
Accelenterts, Spectrometers, Detecetors and Associated Equipment 7oI,
133-144. URL: httops://mm.sciencedirect. con/sciencelarticle/pii/

To be concluded very soon...

Thank you Questions?

Backup

Cosmic background in SHELDON

We have measured the rate of cosmic muons detected by our setup without any radioactive source

We have determined the fluorescence parameters associated to this distribution

Monte Carlo study
 Cosmic background

Reconstruct Q4 parameter in a alpha measurement comparing to injected value

We have measured the rate of cosmic muons detected by our setup without any radioactive source

We have determined the fluorescence parameters associated to this distribution

We have evaluated the impact of this background in our measurement using simulations

Fit model: Cherenkov contribution

The Cherenkov contribution is modeled as a delta function

It is summed to the fluorescence model

The sum is convolved with the detector response

$$
\operatorname{IRF}(t)=\sum_{j=1}^{7} N_{j} G_{j}\left(t ; \mu_{j}, \sigma_{j}\right)
$$

$$
F_{\text {Total }}(t)=\left[N_{C h} \delta\left(t, t_{0}\right)+\left(1-N_{C h}\right) F_{\text {Fluo }}(t)\right] * \operatorname{IRF}(t)
$$

Cherenkov contribution at different wavelengths

Cherenkov ≥ 25 \%

Cherenkov contribution at different wavelengths

500 nm pass long filter

Cherenkov $=8.56 \pm 0.16 \%$

The SHELDON project: Impulse Response Function

Method validation

Monte Carlo simulation to produce 10^{4} fake dataset used to evaluate the possible fit sistematics on fluorescence parameters

Monte Carlo study

Method validation

The uncertainties on the fluorescence parameters are at the percentage level

Monte-Carlo

 study
Systematic error introduced by the choice the DAQ time window

The relative uncertainty on slow component decreases as the upper end of the DAQ time window increases.
Tau4 relative error on DAQ time window

The red line represent our DAQ time window

The number of events is fixed (similar to a measurement lasting one week)

As the statistic increases the uncertainty decreases

The trend does not change with increasing statistics

Measurement of fluorescence: Results

	τ_{1} [ns$]$	τ_{2} [ns]	τ_{3} [ns]	τ_{4} [ns]	τ_{r} [ns]
α	4.79 ± 0.02	20.86 ± 0.39	103.8 ± 2.4	633 ± 14	0.832 ± 0.002
p	4.60 ± 0.02	18.99 ± 0.27	108.2 ± 2.1	691 ± 1 TU	1.208 ± 0.001
e^{-}	3.96 ± 0.02	15.11 ± 0.22	$85.0 \pm 2.0 \mathrm{~F}$	UT549 ± 9	1.667 ± 0.001
	q_{1} [\%]	q_{2} [\%]	TS 43 [\%]	q_{4} [\%]	χ_{r}^{2}
α	55.97 ± 0.32	23.15 ± 0.23	13.17 ± 0.16	8.50 ± 0.42	1.38
p	62.02 ± 0.2711	21.07 ± 0.21	9.94 ± 0.10	6.97 ± 0.36	1.4
e^{-}	65.02 ± 0.36	23.72 ± 0.28	7.26 ± 0.10	4.27 ± 0.47	1.35

Measurement of fluorescence: Results

Particles	Fast(ns)/ Ratio	Slow(ns)/ Ratio	Slower(ns)/ Ratio	Slowest(ns)/ Ratio
γ, e^{+}, e^{-}	$4.6 / 70.7 \%$	$15.1 / 20.5 \%$	$76.1 / 6.0 \%$	$397 / 2.8 \%$
n, p^{+}	$4.5 / 61.4 \%$	$15.7 / 23.2 \%$	$76.2 / 9.0 \%$	$367 / 6.4 \%$
α	$4.345 / 49.82 \%$	$17.64 / 27.39 \%$	$89.045 / 14.67 \%$	$544.48 / 8.12 \%$

Talk of Yaoguang Wang "Detector simulation status" 18/07/2022

e^{-}	$3.96 / 65.02 \%$	$15.11 / 23.72 \%$	$85.0 / 7.26 \%$	$549 / 4.27 \%$
p	$4.60 / 62.02 \%$	$18.99 / 21.07 \%$	$108.2 / 9.94 \%$	$691 / 6.97 \%$
α	$4.79 / 55.97 \%$	$20.86 / 23.15 \%$	$103.8 / 13.17 \%$	$633 / 8.50 \%$

Determination of the Cherenkov spectrum

Refractive index

Using the new measurement of the refractive index

$$
\frac{\partial^{2} E}{\partial x \partial \omega}=\frac{q^{2}}{4 \pi} \mu(\omega) \omega\left(1-\frac{1}{\beta^{2}\left(r^{2}(\omega)\right.}\right)
$$

Talk of Yaoguang Wang "Detector simulation status" 18/07/2022

Systematic error introduced by fit

The modeling of the time rensonse affects more on the $1^{\text {nd }}$ and the $2^{\text {nd }}$ component

Relative error on Q1 simulation 7 Gauss

Relative error on Tau1 simulation 7 Gauss

Measurement of fluorescence time profile with the single photon counting technique

Time-correlated single photon counting (TCSPC) is a technique to measure the fluorescence decay time.
Under certain hypothesis $\left(R_{s p} \ll R_{t r}\right)$, the time of arrival of the photons w.r.t. to the trigger reproduces the fluorescence time distribution.

In our application, one PMT provides the START signal (trigger) and the other PMT gives the STOP signal.

Monte-Carlo study

Systematic error due to the exclusion of the Cherenkov contribution in the fit \longrightarrow Cherenkov not included

The exclusion of Cherenkov light on the fit mostly affects on the fast component
Tau1 relative error in function Cherenkov fraction

Monte-Carlo simulates different contribution of Cherenkov light

The fit does not consider the Cherenkov light

Monte-Carlo study

Systematic error due to the exclusion of the Cherenkov contribution in the fit \longrightarrow Cherenkov not included

The exclusion of Cherenkov light on the fit mostly affects on the fast component
Tau1 relative error in function Cherenkov fraction

The part of the graph above 0.01 fraction makes no sense. In that case Cherenkov light becomes important and the fit doesn't work.

The relative error gets worse as the Cherenkov fraction increases

Monte-Carlo study

Systematic error due to the exclusion of the Cherenkov contribution in the fit \longrightarrow Cherenkov not included

The exclusion of Cherenkov light on the fit mostly affects on the fast component

Tau1 relative error on Cherenkov fraction

C. fraction 0.1

Simulation 0.003 cherenkov fraction

C. fraction 0.003

Monte Carlo study

Systematics studies: Cherenkov neglect

Same Monte Carlo simulation of the sensitivity studies
Cherenkov simulated in the time distribution, but neglected in the fit
Tau1 relative error in function Cherenkov fraction

Monte Carlo
study

Systematics studies: Cherenkov neglect

Same Monte Carlo simulation of the sensitivity studies
Cherenkov simulated in the time distribution, but neglected in the fit
Tau1 relative error in function Cherenkov fraction

The part of the graph above 0.01 fraction makes no sense. In that case Cherenkov light becomes important and the fit doesn't work.

The relative error gets worse as the Cherenkov fraction increases

Monte-Carlo study

Cherenkov sensitivity study

Bias of the Cherenkov percetange vs the simulated one

Normalization of the fourth component

The fit model uses four components to describe the de-excitation time of the L.S.

These components are normalized to the integral of the exponential

For the fourth component this introduces an error

We improve the implementation of this normalization to consider this error

Monte-Carlo study

Systematic error introduced by fit \longrightarrow On 10^{5} simulations

A simple Monte Carlo was realized to study the fit systematics.
The percentage uncertainty introduced by the fit is less than 5% on τ_{i} and q_{i}.

Monte-Carlo study

Systematic error introduced by a different description of the detector response

Only 1 Gaussian was used instead of 3 to describe the system response

In this case the percentage uncertainty gets worse for the fast component

Relative error on Qs fit with 1 Gauss

Relative error on Taus fit with 1 Gaussian only

