Progress on the full Monte Carlo production of IBD-like spectral components and geoneutrino sensitivity studies

JUNO EU-AM Fall Meeting 2022, Ferrara (Italy)

25th October 2022 | <u>Nikhil Mohan^(1,3)</u>, <u>Anita Meraviglia^(1,3)</u>, Livia Ludhova^(2,3)

- (1) GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)
- (2) Forschungszentrum Jülich, Jülich (Germany)
- (3) RWTH Aachen University, Aachen (Germany)

OUTLINE

- 1. Analysis strategy
- 2. Current status of the MC PDFs
- 3. Accidental background MC production
- 4. Geoneutrinos sensitivity studies
- 5. Conclusions and outlook

1. Analysis Workflow

Thanks to Tao !!!

Offline Software: Trunk version

Includes all the relevant standard parameters used in recent NMO release.

- Generator: hepevt (IBD.exe)
- No. of events: 1,006,000 IBD events (unoscillated)
- Rate: 1 Hz (default)
- IBD event: e⁺ (prompt) + n (delayed)

Page 5

Thanks to Tao !!!

Offline Software: Trunk version

Includes all the relevant standard parameters used in recent NMO release.

- Generator: hepevt (IBD.exe)
- No. of events: 1,006,000 IBD events (unoscillated)
- Rate: 1 Hz (default)
- IBD event: e⁺ (prompt) + n (delayed)

Thanks to Tao !!!

Offline Software: Trunk version

Includes all the relevant standard parameters used in recent NMO release.

- Generator: hepevt (IBD.exe)
- No. of events: 1,006,000 IBD events (unoscillated)
- Rate: 1 Hz (default)
- IBD event: e⁺ (prompt) + n (delayed)

How to correct the bias in reco energy?

How to correct the bias in reco energy?

- 1. Previously, we used the **Erec-Edep** vs **Edep** plot to get the energy correction for the bias.
- From the comments from last G.M., we realised this is the wrong approach and so switched to Erec-Qedep vs Erec.

How to correct the bias in reco energy?

- 1. Previously, we used the **Erec-Edep** vs **Edep** plot to get the energy correction for the bias.
- 2. From the comments from last G.M., we realised this is the wrong approach and so switched to **Erec-Qedep** vs **Erec**.

Correcting the bias in reco energy

Erec-Qedep vs Erec

5

Erec

6

3

• Erec-Qedep vs Erec 2D plot

Y-profile of the 2D plot

TH2D_pfx

905147

3.728

0.5329

1.491

0.2486

9

LI II.

10

Entries

Mean

Mean y

Std Dev

Std Dev y

8

Page 11

Correcting the bias in reco energy

Erec-Qedep vs Erec Erec-Qedep Profile Polynomial fit 1.6 250 parameters: 1.5 1.4 p0= -0.0194 -200 1.2 p1= 0.1183 Erec - Qedep 0.5 p2= 0.0116 150 p3=-0.0012 0.8 p4= 5.37e-5 Y-profile-Fit pfx TH2D 100 0.6 Entries 905617 Entries 905147 3.728 3.728 Mean x Mean 0.4 0.5329 0 Mean y 0.5329 This correction Mean y 50 Std Dev x 1.491 Std Dev 1.491 is applied to all 0.2 Std Dev y 0.2486 Std Dev y 0.2486 input PDFs. -0.5 9 10 10 2 3 5 6 7 8 2 3 5 6 7 8 9 Erec Erec

• Erec-Qedep vs Erec 2D plot

Page 12

2. (a) Reactor spectra - corrected and Gauss smeared

Reactor IBDs - Event Spectra (after selection cuts)

- Corrected reco. energy = Reco. energy - poly(Reco. energy)
- Corrected reco. spectrum matches very well with the Convoluted spectrum (Qedep smeared with the abc-model)

^[2] DocDB: 7546-v9: TechNote on Comparison of JUNO Neutrino Mass Ordering Analysis Results

2. (b) Geo-neutrino MC Simulation (updated)

Geo-neutrinos - Prompt Event Spectra (after selection cuts)

Offline Software: Trunk version

- Simulated 50,000 Geo-neutrino events from U and Th sources separately (GeoNu.exe).
- IBD event: e^+ (prompt) + n (delayed)

2. (b) Geo-neutrino MC Simulation (updated)

Geo-neutrinos - Prompt Event Spectra (after selection cuts)

Geo-neutrino spectra updated with the new energy correction!

Offline Software: Trunk version

- Simulated 50,000 Geo-neutrino events from U and Th sources separately (GeoNu.exe).
- IBD event: e⁺ (prompt) + n (delayed)

Page 15

2. (c) Li-He MC Simulation (new)

Offline Software: Trunk version

- Simulated 100,000 Li and He events separately using the gun generator.
- IBD-like event: e⁻+n+α+γ (prompt) + n (delayed)

2. (c) Li-He MC Simulation (new)

Thanks to Cécile !!!

Offline Software: Trunk version

- Simulated 100,000 Li and He events separately using the gun generator.
- IBD-like event: e⁻+n+α+γ (prompt) + n (delayed)

Contributions from Li and He are combined in the ratio 75 to 25 respectively (from KamLAND results).

Ratio of Li-He in the spectrum from NMO under investigation.

2. (c) Li-He MC Simulation (new)

We apply the same energy correction in this case also!

Thanks to Cécile !!!

Offline Software: Trunk version

- Simulated 100,000 Li and He events separately using the gun generator.
- IBD-like event: e⁻+n+α+γ (prompt) + n (delayed)

Contributions from Li and He are combined in the ratio 75 to 25 respectively (from KamLAND results).

Ratio of Li-He in the spectrum from NMO under investigation.

3. Accidental background MC production

How we obtained the PDF: the logical steps

- **1.** Run the pre-mixed radioactivity datasets until the reco. stage.
- **2.** Build the 4D (E_{rec} , R_x , R_y , R_z) plot from the user-rec rootfile.
- **3.** Extract the prompt energy spectrum of accidentals by considering all the possible pairs of events from the 4D plot, and check whether they pass the IBD selection cuts.
- **4.** Impose the FV (r < 17.2 m) cut on the prompt spectrum.

• It has been built starting from the single radioactive isotope produced for the Mock Data Challenge (MDC)

Dataset Name +	Generators to be used +	Number of Events +	Rates (used in elecsim) +	Shift persons +	Status +	Document +	Notes +
Muon	Muon.exe	1,000,000 events (x10)	28.2 Hz	Jilei Xu	1,000,000 (x10)	Link to gitlab	Total 4 days
U238@LS	GRDM	1,000,000 events (x13)	3.234 Hz	Cailian <mark>J</mark> iang	1,000,000 events (x13)	Link to gitlab	Notes
Th232@LS	GRDM	1,000,000 events (x9)	0.733 Hz	shift	1,000,000 events (x9)	Links	Notes
K40@LS	GRDM	1,000,000 events	0.53 Hz	shift	1,000,000 events	Links	Notes
Pb210@LS	GRDM	1,000,000 events (x3)	17.04 Hz	shift	1,000,000 events (x3)	Links	Notes
C14@LS	GRDM	1,000,000,000 events	3.3e4 Hz	shift	1,000,000,000 events	Links	Notes
Kr85@LS	GRDM	1,000,000 events	1.163 Hz	shift	1,000,000 events	Links	Notes
U238@Acrylic	GRDM	10,000,000 events (x13)	98.41 Hz	shift	10,000,000 events (x13)	Links	Notes
Th232@Acrylic	GRDM	10,000,000 events (x9)	22.29 Hz	shift	10,000,000 events (x9)	Links	Notes
K40@Acrylic	GRDM	10,000,000 events	161.25 Hz	shift	10,000,000 events	Links	Notes
U238@node/bar	GRDM	100,000,000 events (x13)	2102.36 Hz	shift	100,000,000 events (x13)	Links	Notes
Th232@node/bar	GRDM	100,000,000 events (x9)	1428.57 Hz	shift	100,000,000 events (x9)	Links	Notes
K40@node/bar	GRDM	100,000,000 events	344.5 Hz	shift	100,000,000 events	Links	Notes
Co60@node/bar	GRDM	100,000,000 events	97.5 Hz	shift	100,000,000 events	Links	Notes
U238@PMTGlass	GRDM	1,000,000,000 events (x13)	4.90e6 Hz	shift	1,000,000,000 events (x13)	Links	Notes
Th232@PMTGlass	GRDM	1,000,000,000 events (x9)	8.64e5 Hz	shift	1,000,000,000 events (x9)	Links	Notes
K40@PMTGlass	GRDM	1,000,000,000 events	4.44e5 Hz	shift	1,000,000,000 events	Links	Notes
TI208@PMTGlass	GRDM	1,000,000,000 events	1.39e5 Hz	shift	Not start	Links	Notes
Co60@Truss	GRDM	N events	? Hz	shift	Not start	Links	Notes
TI208@Truss	GRDM	N events	? Hz	shift	Not start	Links	Notes
Rn222@WaterRadon	GRDM	100,000,000 events (x7)	90 Hz	shift	100,000,000 events (x7)	Links	Notes

We did several cross-checks to understand the numbers given here and found the following:

https://juno.ihep.ac.cn/mediawiki/index.php/Analysis Foundation Groups/Data production/Mock Data Challenges

What we found:

- The Number of events do not match the actual number simulated.
 - For the external bkg, the Number of events actually simulated is larger because at least 1 hour needed to be generated for the pre-mixing.
- We verified that the Rates shown here matches with the rates calculated from the inputs given in the <u>JUNO radioactivity paper</u>*

What we found:

- The Number of events do not match the actual number simulated.
 - For the external bkg, the Number of events actually simulated is larger because at least 1 hour needed to be generated for the pre-mixing.
- We verified that the Rates shown here matches with the rates calculated from the inputs given in the <u>JUNO radioactivity paper</u>*
- The Bi-Po events coming from the U, Th chains are simulated as correlated events.

What we found:

- The Number of events do not match the actual number simulated.
 - For the external bkg, the Number of events actually simulated is larger because at least 1 hour needed to be generated for the pre-mixing.
- We verified that the Rates shown here matches with the rates calculated from the inputs given in the <u>JUNO radioactivity paper</u>*
- The Bi-Po events coming from the U, Th chains are simulated as correlated events.

After having understood the structure, we run all the 3600 pre-mixed detsim files until the reco stage (J22.1.0-rc2)

Step 2: build the 4D (Erec, Rx, Ry, Rz) plot

Distribution of the reconstructed energy (>0.7 MeV)

135331

1.477

0.6214

Page 25

Step 3: extract the prompt energy spectrum of accidentals

Being **N** the number of events of the 4D plot, we consider all the **N(N-1)** ~ **10**¹⁰ combinations between every possible p-d pairs and check whether they pass the IBD cuts:

Step 3: extract the prompt energy spectrum of accidentals

Being **N** the number of events of the 4D plot, we consider all the **N(N-1) ~ 10¹⁰ combinations** between every possible p-d pairs and check whether they pass the IBD cuts:

- E_{prompt} > 0.8 MeV.
- $1.9 \text{ MeV} < \mathbf{E}_{delayed} < 2.9 \text{ MeV}$ and
 - $4.4 \text{ MeV} < \mathbf{E}_{delayed} < 5.5 \text{ MeV}.$
- $\mathbf{R}_{\mathbf{prompt-delayed}} < 1.5 \text{ m.}$

Step 3: extract the prompt energy spectrum of accidentals

Being **N** the number of events of the 4D plot, we consider all the **N(N-1)** ~ **10**¹⁰ combinations between every possible p-d pairs and check whether they pass the IBD cuts:

- E_{prompt} > 0.8 MeV.
- 1.9 MeV < E_{delayed} < 2.9 MeV and
 4.4 MeV < E_{delayed} < 5.5 MeV.
- $\mathbf{R}_{\mathbf{prompt-delayed}} < 1.5 \text{ m.}$

Step 4: FV cut on the accidentals prompt energy spectrum

 After applying the R < 17.2 m FV cut and adding energy correction on the prompt.

^[4]DocDB-5929-v34

Step 4: FV cut on the accidentals prompt energy spectrum

- •After applying the **R < 17.2 m FV cut** and adding energy correction on the prompt.
- •Reco. spectrum w/ correction and the NMO input spectra have similar shape but is shifted.

^[4]DocDB-5929-v34

$$R_{acc} = R_p \cdot R_d \cdot \Delta T_{p-d}$$

• First we evaluated an <u>upper limit</u> for accidental, considering both $R_p = R_d = R_{int+ext}$, where

$$R_{acc} = R_p \cdot R_d \cdot \Delta T_{p-d}$$

• First we evaluated an <u>upper limit</u> for accidental, considering both $R_p = R_d = R_{int+ext}$, where

$$R_{acc} = R_p \cdot R_d \cdot \Delta T_{p-d}$$

• First we evaluated an <u>upper limit</u> for accidental, considering both $R_p = R_d = R_{int+ext}$, where

$$R_{acc} = R_p \cdot R_d \cdot \Delta T_{p-d}$$

• First we evaluated an <u>upper limit</u> for accidental, considering both $R_p = R_d = R_{int+ext}$, where

$$R_{acc} = R_p \cdot R_d \cdot \Delta T_{p-d}$$

• First we evaluated an <u>upper limit</u> for accidental, considering both $R_p = R_d = R_{int+ext'}$ where

Analysis Workflow

PDFs we generated

Analysis Workflow

PDFs we generated

Toy data sampling

The pdfs of rest of the bkgs are taken from the common inputs root file (JUNOInputs2022_01_06.root)^[4]

PDFs from NMO input file

Analysis Workflow

4. Geoneutrinos sensitivity studies

JUST fitter configurations

<u>General config:</u>					
• Fitting range:	0.8 - 12 MeV				
• Bin Width:	0.02 MeV				
Exposure fraction:	0.916 (after veto)				
IBD efficiency:	82.2%				
• FV Mass:	18.31 kton				
• Time:	1 year				
• No. of fits:	10k				

 Species: ⁹Li/⁸He (constraint 20%), Acc. (constraint 1%), Fast-n (constraint 100%), Alpha-n (constraint 50%), Atm. neutrinos (constraint 50%).

JUST fitter configurations

General config:						
 Fitting range: 	0.8 - 12 MeV					
• Bin Width:	0.02 MeV					
Exposure fraction:	0.916 (after veto)					
IBD efficiency:	82.2%					
• FV Mass:	18.31 kton					
• Time:	1 year					
• No. of fits:	10k					

 Species: ⁹Li/⁸He (constraint 20%), Acc. (constraint 1%), Fast-n (constraint 100%), Alpha-n (constraint 50%), Atm. neutrinos (constraint 50%).

Species	Events/day/kton	Uncertainty (%)	
Reactors	3.4093	-	
Geo-neutrinos	0.0870	-	
⁹ Li/ ⁸ He	0.0477	20	
Accidentals	0.0477	1	
Alpha-n	0.0030	50	
Fast-n	0.0060	100	
Atm. neutrinos	0.0095	50	

JUST fitter configurations

•	Fitting range:	0.8 - 12 MeV
•	Bin Width:	0.02 MeV
•	Exposure fraction:	0.916 (after veto)
•	IBD efficiency:	82.2%
•	FV Mass:	18.31 kton
•	Time:	1 year
•	No. of fits:	10k

 Species: ⁹Li/⁸He (constraint 20%), Acc. (constraint 1%), Fast-n (constraint 100%), Alpha-n (constraint 50%), Atm. neutrinos (constraint 50%).

		Page 40
✓ new PDFs from full MC simulations	✓ newly calculated event rate	

Species	Events/day/kton	Uncertainity (%)	
Reactors	3.4093	-	
Geo-neutrinos	0.0870	-	
✓ ⁹ Li/ ⁸ He	0.0477	20	
✓ Accidentals	✔ 0.0426	1	
Alpha-n	0.0030	50	
Fast-n	0.0060	100	
Atm. neutrinos	0.0095	50	

Fit results:

	Median of error/rate distbn.	Sigma left	Sigma right
Case 1 (old PDFs w/o updated energy correction)	14.00	1.63	2.11
Case 2 (old PDFs w/ updated energy correction)	14.02	1.63	2.10
Case 3 (new Li-He PDF w/ energy correction)	14.02	1.64	2.07
Case 4 (new Acc. PDF w/ energy correction)	13.96	1.58	2.17
Case 5 (new Li-He + Acc. PDF w/ energy correction)	13.97	1.58	2.16

Conclusions and outlook

- ✓ Updated the energy correction for the reco. bias from the new 2D plot.
- ✓ New PDFs from the full MC simulations of Accidentals (using MDC data) & Li-He, and are used in template fits.
- New shapes do not change the results of the the Geoneutrino sensitivity of 1 year, but the effect on NMO should be checked.
- Study of the background from the correlated Bi-Po events planned.
- Currently working on the full simulation of the remaining bkgs (Alpha n generator from Maxim Gromov) and also on optimizing the selection cuts.
- JUST fitter is being further developed to include oscillation parameters as free fit parameters for the NMO analysis.

Conclusions and outlook

- ✓ Updated the energy correction for the reco. bias from the new 2D plot.
- ✓ New PDFs from the full MC simulations of Accidentals (using MDC data) & Li-He, and are used in template fits.
- New shapes do not change the results of the the Geoneutrino sensitivity of 1 year, but the effect on NMO should be checked.
- Study of the background from the correlated Bi-Po events planned.
- Currently working on the full simulation of the remaining bkgs (Alpha n generator from Maxim Gromov) and also on optimizing the selection cuts.
- JUST fitter is being further developed to include oscillation parameters as free fit parameters for the NMO analysis.

Page 44

Backup slides

Where do the rates come from?

Dataset Name 🗢	Rates (used in elecsim) +			
Muon	28.2 Hz			
U238@LS	3.234 Hz			
Th232@LS	0.733 Hz			
K40@LS	0.53 Hz			
Pb210@LS	17.04 Hz			
C14@LS	3.3e4 Hz			
Kr85@LS	1.163 Hz			
U238@Acrylic	98.41 Hz			
Th232@Acrylic	22.29 Hz			
K40@Acrylic	161.25 Hz			
U238@node/bar	2102.36 Hz			
Th232@node/bar	1428.57 Hz			
K40@node/bar	344.5 Hz			
Co60@node/bar	97.5 Hz			
U238@PMTGlass	4.90e6 Hz			
Th232@PMTGlass	8.64e5 Hz			
K40@PMTGlass	4.44e5 Hz			
TI208@PMTGlass	1.39e5 Hz			
Co60@Truss	? Hz			
TI208@Truss	? Hz			
Rn222@WaterRadon	90 Hz			

We compared them with the <u>JUNO radioactivity paper</u>*. Starting from the concentrations in ppb (from Table 4 of the paper):

Material	Magg	Target impurity concentration			ration	Singles		
	Widss	²³⁸ U	²³² Th	⁴⁰ K	²¹⁰ Pb	⁶⁰ Co	DV	FV
	[t]	[ppb]	[ppb]	[ppb]	[ppb]	[mBq/kg]	[Hz]	[Hz]
LS-reactor	20000	10^{-6}	10^{-6}	10^{-7}	10^{-13}		2.5	2.2
Acrylic	610	10^{-3}	10^{-3}	10^{-3}			8.4	0.4
SS structure	1000	1	3	0.2		20	15.9	1.1
	65	0.2	0.6	0.02		1.5		
PMT glass	33.5	400	400	40				
	100.5	200	120	4			26.2	2.8
	2.6	400	400	200				
PMT readout	125	68	194	5		16	3.4	0.4
	16.3	93	243	12		14	0.4	0.4
Other							2.5	0.3
Sum				59	7.2			

Table 4: Final background budget for the main materials used in the JUNO detector with reconstructed energy E_{rec} larger than 0.7 MeV. The expected count rates are given both in the full DV ($r_{LS} = 17.7$ m) and in the default FV ($r_{LS} = 17.2$ m). The "Other" components include all materials that have relatively smaller contribution to the background (compare with Table 3), such as the calibration parts, the LPMT cover, the rock, and the radon in water. These results include energy resolution, optical propagation, charge reconstruction, and non-uniformity corrections.

*<u>https://arxiv.org/abs/2107.03669</u>

Where do the rates come from?

Dataset Name 🗢	Rates (used in elecsim) +				
Muon	28.2 Hz				
U238@LS	3.234 Hz				
Th232@LS	0.733 Hz				
K40@LS	0.53 Hz				
Pb210@LS	17.04 Hz				
C14@LS	3.3e4 Hz				
Kr85@LS	1.163 Hz				
U238@Acrylic	98.41 Hz				
Th232@Acrylic	22.29 Hz				
K40@Acrylic	161.25 Hz				
U238@node/bar	2102.36 Hz				
Th232@node/bar	1428.57 Hz				
K40@node/bar	344.5 Hz				
Co60@node/bar	97.5 Hz				
U238@PMTGlass	4.90e6 Hz				
Th232@PMTGlass	8.64e5 Hz				
K40@PMTGlass	4.44e5 Hz				
TI208@PMTGlass	1.39e5 Hz				
Co60@Truss	? Hz				
TI208@Truss	? Hz				
Rn222@WaterRadon	90 Hz				

We compared them with the <u>JUNO radioactivity paper</u>*. Starting from the concentrations in ppb (from Table 4 of the paper):

We calculate the rates as:

	$c[g/g] \cdot N_A[1/mol]$	Material mass [a]
K[IIZ]	$\tau[s] \cdot M[g/mol]$	materia mass [g]

Matarial	Maga	Mass Target impurity concentration									
material	Mass	^{238}U	232 Th	^{40}K	²¹⁰ Pb	^{60}Co	DV	FV			
	[t]	[ppb]	[ppb]	[ppb]	[ppb]	[mBq/kg]	[Hz]	[Hz]			
LS-reactor	20000	10^{-6}	10^{-6}	10^{-7}	10^{-13}		2.5	2.2			
Acrylic	610	10^{-3}	10^{-3}	10^{-3}			8.4	0.4			
CC startstrand	1000	1	3	0.2		20	15.0	1.1			
55 structure	65	0.2	0.6	0.02		1.5	15.9	1.1			
	33.5	400	400	40							
PMT glass	100.5	200	120	4			26.2	2.8			
	2.6	400	400	200							
DMT mondout	125	68	194	5		16	2.4	0.4			
r M i Teadout	16.3	93	243	12		14	0.4	0.4			
Other							2.5	0.3			
	59	7.2									

Table 4: Final background budget for the main materials used in the JUNO detector with reconstructed energy E_{rec} larger than 0.7 MeV. The expected count rates are given both in the full DV ($r_{LS} = 17.7$ m) and in the default FV ($r_{LS} = 17.2$ m). The "Other" components include all materials that have relatively smaller contribution to the background (compare with Table 3), such as the calibration parts, the LPMT cover, the rock, and the radon in water. These results include energy resolution, optical propagation, charge reconstruction, and non-uniformity corrections.

*<u>https://arxiv.org/abs/2107.03669</u>

Results

	Radioactivity paper									
Isotope	c [ppb]	c [g/g]	Half life [y]	Mean lifetime [s]	Molar mass [g/mol]	R [Hz]	R [Hz]			
238U @ LS	1.00E-06	1.00E-15	4.47E+09	2.03E+17	238.0507882	3.234	3.234			
232Th @ LS	1.00E-06	1.00E-15	1.41E+10	6.39E+17	232.0380553	0.731	0.733			
40K @ LS	1.00E-07	1.00E-16	1.25E+09	5.69E+16	39.96399817	0.530	0.53			
210Pb @ LS	1.00E-13	1.00E-22	2.23E+01	1.01E+09	209.9841885	16.960	17.04			

Liquid scintillator

	Radioactivity paper									
Isotope	c [ppb]	c [g/g]	Half life [y]	Mean lifetime [s]	Molar mass [g/mol]	R [Hz]	R [Hz]			
238U @ acrylic	1.00E-03	1.00E-12	2 4.47E+09	2.03E+17	238.0507882	98.643	98.41			
232Th @ acrylic	1.00E-03	1.00E-12	1.41E+10	.41E+10 6.39E+17 232.0380553		22.290	22.29			
40K@acrylic	1.00E-03	1.00E-12	1.25E+09	5.69E+16	39.96399817	161.500	161.25			

Acrylic vessel

			Radioactivi	ity paper			MDC table
Isotope	c [ppb]	c [g/g]	Half life [y]	Mean lifetime [s]	Molar mass [g/mol]	R [Hz]	R [Hz]
238U @ SS structure	2.00E-01	2.00E-10	4.47E+09	2.03E+17	238.0507882	2,102.23	2102.36
232Th @ SS structure	6.00E-01	6.00E-10	1.41E+10	6.39E+17	232.0380553	1,425.09	1428.57
40K @ SS structure	2.00E-02	2.00E-11	1.25E+09	5.69E+16	39.96399817	344.18	344.5

Results

	Radioactivity paper									
Isotope	c [ppb]	c [g/g]	Half life [y]	Mean lifetime [s]	Molar mass [g/mol]	R [Hz]	R [Hz]			
238U @ LS	1.00E-06	1.00E-15	4.47E+09	2.03E+17	238.0507882	3.234	3.234			
232Th @ LS	1.00E-06	1.00E-15	1.41E+10	6.39E+17	232.0380553	0.731	0.733			
40K@LS	1.00E-16	1.25E+09	5.69E+16	39.96399817	0.530	0.53				
210Pb @ LS	1.00E-13	1.00E-22	2.23E+01	1.01E+09	209.9841885	16.960	17.04			

Liquid scintillator

	Radioactivity paper									
Isotope	c [ppb]	c [g/g]	Half life [y]	Mean lifetime [s]	Molar mass [g/mol]	R [Hz]	R [Hz]			
238U @ acrylic	1.00E-12	4.47E+09	2.03E+17	238.0507882	98.643	98.41				
232Th @ acrylic	1.00E-03	1.00E-12	1.41E+10	1E+10 6.39E+17 232.0380553		22.290	22.29			
40K @ acrylic	1.00E-03	1.00E-12	1.25E+09	5.69E+16	39.96399817	161.500	161.25			

Acrylic vessel

Very good agreement!

	Radioactivity paper									
Isotope	c [ppb]	c [g/g]	Half life [y]	Mean lifetime [s]	Molar mass [g/mol]	R [Hz]	R [Hz]			
238U @ SS structure	2.00E-01	2.00E-01 2.00E-10 4.4		2.03E+17	238.0507882	2,102.23	2102.36			
232Th @ SS structure	6.00E-01	6.00E-10	1.41E+10	+10 6.39E+17 232.0380553		1,425.09	1428.57			
40K @ SS structure	2.00E-02	2.00E-11	1.25E+09	5.69E+16	39.96399817	344.18	344.5			

IBD Event Selection Strategy - Elecsim stage

Using the eventindex tree to align between MC and reconstructed events.

5 IBDs simulated becomes 10 elecsim events.

Elecsim ID

Detsim ID

:	*****	**:	*********	k	*******	. 64	*******	*	**>	********	**7	*********	*****	******	***	******
*	Row	*	Instance >	k	eventid.e	۰r	nevents.n		*	tags	*	filenames	; *	entries	*	nhits *
:	****	**:	*********	* *	******	; r 7	******	*	***	*******	**7	********	****	******	***	******
*	0	*	0 >	k	0	r	1		*	default	*	./output/	/ *	0	*	4413 *
*	1	*	0 7	k	1	، ۲	1		*	default	*	./output/	/ *	0	*	3668 *
*	2	*	0 7	k	2	۲.	1		*	default	*	./output/	/ *	1	*	3938 *
*	3	*	0 >	k	3	، ۲	1		*	default	*	./output/	/ *	1	*	3704 *
*	4	*	0 7	k	4	7	1		*	default	*	./output/	/ *	2	*	4314 *
*	5	*	0 >	k	5	، ۲	1		*	default	*	./output/	/ *	2	*	3634 *
*	6	*	0 7	k	6	، ۲	1		*	default	*	./output/	/ *	3	*	12334 *
*	7	*	0 7	k	7	، ۲	1		*	default	*	./output/	/ *	3	*	3954 *
*	8	*	0 7	k	8	۲.	1		*	default	*	./output/	/ *	4	*	5319 *
*	9	*	0 7	k	9	، ۲	1		*	default	*	./output/	/ *	4	*	3612 *
*	10	*	0 >	k	10	۲.	1		*	default	*	./output/	/ *	5	*	7062 *
*	11	*	0 >	k	11	، ۲	1		*	default	*	./output/	/ *	5	*	3781 *
*	12	*	0 >	k	12	5	1	1	*	default	*	/output/	/ *	6	*	3437 *

1) The prompt and delayed are triggered in 2 separate readouts at elecsim stage.

- 2) The prompt is always the first entry and the corresponding delayed is the next entry.
- \rightarrow Events with 2 readouts gets selected.

Reactor IBD MC Simulation Spectra

Incorporating Oscillations

Reactor IBDs - Prompt Event Spectra (after selection cuts)

The oscillated spectra (c) is obtained by weighing the unoscillated event spectra (a) with Pee calculated using GLoBES^[2] (b).

^[2] Comput.Phys.Commun. 167 (2005) 195

Page 51

Reactor IBDs - Prompt Event Spectra (after selection cuts)

Geoneutrino IBD MC Simulation Spectra

Geo IBD Spectra (Th) (before selection cuts)

Calculation of precision

The ratio of the fitted errors and the fitted rates for Geo-neutrinos are histogrammed for a definite binning.

Forschungszentrum

Case (5): Latest full MC PDFs of Reactor, Geo-neutrinos, Li-He & Accidentals

- Fitted spectrum at the best fit point for one of the 10k fits for 1 year of exposure.
- The fit matches well with the MC expectation.

JÜLICH

Forschungszentrum

What we found:

- For each radioactive isotope, the <u>time simulated is actually different</u>. For example;
 - U238@LS: ~89 hours
 - C14@LS: ~8.4 hours
 - K40@LS: ~524 hours
- The external bkg number of events actually simulated is larger because at least 1 hour needed to be generated for the pre-mixing.

The "bucket theory"

- Starting from the **single detsim files** of each isotope, some of them are merged.
- How many of them are **merged**? The minimum amount of number such to create a file

corresponding to at least 1 hour

• Finally, the **pre-mixed dataset** is built (at the detsim level), by extracting for each isotope in the

merge folder a number of events corresponding to 1 hour of data-taking

After having understood the structure, we run all the 3600 pre-mixed detsim files until the reco stage

