Study of $B^+ \rightarrow K^+ \tau^+ \tau^-$ using hadronic tagging

Debjit Ghosh

August 5, 2022

Study of $B^+ \to K^+ \tau^+ \tau^-$

Motivation:

1. FCNC: highly suppressed in SM, $\mathcal{O}(10^{-7})$ 2. 3^{rd} generation strongly couples to NP

Earlier searches:

- 1. Attempt in Belle (by Simon Wehle, 2016): Belle Note-1394
- 2. BaBar (2017): <u>arXiv:1605.09637</u>

Initial step: Perform similar to Simon's study in Belle II modify Vidya's reconstruction script for Belle II

upper limit at 90% confidence level, $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 3.17 \times 10^{-4}$

upper limit at 90 % confidence level, $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$

SignalMC generator

#simulated sample size: 50 million generator model: BTOSLLBALL release-06-00-10 globalTag: mc_production_MC15ri_a bkg: early phase III (release-06-00-05), BGx1

+ charge conjugate

Reconstruction

$$B_{tag}^{-} \qquad \Upsilon(4S) \qquad B_{sig}^{+} \qquad h^{+}$$

$$h^{-} \in \{e^{-}, \mu^{-}, \pi^{-}\} \qquad h^{-}$$

$$h^{-} \qquad h^{-}$$

$$h^{-} \qquad h^{-}$$

$$h^{-} \qquad h^{-}$$

$$h^{-} \qquad h^{-}$$

4

Selection

Charged tracks (e, μ, K, π) cuts:

- transverse distance from IP, dr < 0.5• distance in beam direction from IP, |dz| < 2polar angle is with in CDC acceptance (thetaInCDCAcceptance)

PID cuts:

- $\cdot e: \mathscr{L}(electronID) > 0.9$
- • μ : $\mathscr{L}(muonID) > 0.9$
- •K: $\mathscr{L}(kaonID) > 0.6$
- • π : $\mathscr{L}(pionID) > 0.6$

photon: use all photons (gamma:all)

Selection

Reconstruct FEI hadronic B_{tag} :

- weight file prefix 'FEIv4_2021_MC14_release_05_01_12'
- two most probable B_{tag} candidates are accepted
- $M_{bc} > 5.27$
- $|\Delta E| < 0.1$
- FEI signal probability > 0.001
- ROE of B_{tag} has 3 charged tracks

Analysis globalTag: 'analysis_tools_light-2203-zeus'

Continuum suppression:

- event sphericity > 0.2
- cosTBTO < 0.9

ROE mask:

- dr < 0.5, |dz| < 2, thetaInCDCAcceptance
- E > 0.06 and |cluster time| < 20

Reconstruction

- •Reconstruct B_{sig}^+ with $K^+h^+h^{\prime-}$ combinations
- •Reconstruct $\Upsilon(4S) \rightarrow B^+_{sig} B^-_{tag}$
- Build ROE with mask and reconstruct ROE π^0

- ROE π^0 :

ROE mask:

• dr < 0.5, |dz| < 2, thetaInCDCAcceptance

•
$$E > 0.06$$
 and $|clustertime| < 20$

daughter photons are in ROE and passes ROE mask • select π^0 with least difference between M and InvM

...let's look at few distributions

Signal side

 M_{bc}

"signal" is selected by "isSignalAcceptMissingNeutrino"

 ΔE

Tag side

 M_{bc}

Extra ECL energy (E_{ECL})

Energy left in ECL cluster after removing B_{tag} and B_{sig} related deposition

Ideally it should peak at zero

 q_K^2 and $M(\tau^+\tau^-)$

$$q_K^2 \equiv (p_{\Upsilon(4S)} - p_{B_{tag}} - p_K)^2$$

where $p_{\Upsilon(4S)}$ is the four momentum of beam

