Capacitevely coupled LAPPD cross talk Trieste test June 2023

Deb Sankar Bhattacharya¹, Chandradoy Chatterjee¹, Silvia Dalla Torre¹, Mauro Gregori¹, Alexander Kiselev², Saverio Minutoli³, Mikhail Osipenko³

¹INFN Trieste ²BNL ³INFN Genova

remote

M. Osipenko

INFN

26 June 2023

Trieste test June 2023

Measured LAPPD signals w.r.t. Hamamatsu MCP

- LAPPD risetime (20-80%) was about 0.75 ns,
- Hamamatsu MCP had 0.4 ns (intrinsic 0.16 ns),
- V1742 digitizer has BW=0.5 GHz →0.45 ns is its intrinsic limit on risetime (20-80%),
- LAPPD 1 inch pad has large capacitance 5 pF, assuming 50Ω load we expected 0.26 ns.

Cross talk on LAPPD at CERN

- in single hit measurements (laser) signals are clean,
- in multiple hit events (Cherenkov ring + beam spot) strong cross talk was observed,
- 30-90% of events have at least one EMI distortion,
- EMI distortion on signal affects rising edge (timing),
- in affected events 17/31 channels are distorted.

Cross talk test on LAPPD in Trieste

- LAPPD N.153 with HV conf.: 100/825/200/900/200,
- readout PCB with pads soldered to connectors,
- measured 5×5 array of 6.2 mm pitch pads,
- pulsed laser source at 300 Hz, high amplitude,
- laser focused on ch11, laser spot is $<500\mu m$,
- ch11 is connected directly to V1742 digitizer,
- all other channels are amplified.

LAPPD#ig3_Pod Type; C (6 mm by 6 mm, pitch 6.2 mm)										
				ı			-			
NOT	23	21	13	ā		NOT	23	21	13	5
22	۱۷	15	7	6	1	22	14	15	7	6
20	19	18	17	16		20	19	18	17	16
12	11	10	9	8		12	11	10	S	8
4	3	2	1	0		4	з	2	1	0

the numbers are CAEN channel numbers: $ch_{\perp N}$

- Looking lowards PC window, PC 1W on top

Relative ADC map of measured LAPPD channels

• vertical and horizontal pads collect $18\% \pm 1\%$, diagonal pads get 5% \pm 0.5% (\rightarrow R avalanche 4.6 mm)

Trieste test June 2023

Timing of LAPPD

Introduction

- σ (ch11-ch10)=17 ps \rightarrow LAPPD TTS=12 ps for 11.3 pC/3*10^{6*}1e=23 photons, TTS SPE=58 ps;
- with 20 μ m pore LAPPD N.124 at CERN TTS SPE=75 ps;
- σ (ch11-TR01)=46 ps \rightarrow LDH-P-C-405 laser pulse width of <50 ps.

26 June 2023

Trieste LAPPD cross-talk map

INFN

26 June 2023

Cross talk on LAPPD in Trieste

 Cross talk in channels far from laser spot is about 1% in amplitude.

Cherenkov ring

Introduction

- Cherenkov ring was observed,
- normalization of average is affected by cross-talk,
- beam spot was suppressed by a factor of 10 (grease+black tape on the window),
- 32 channels are barely sufficient to cover entire ring (25 mm pads, ring radius 60 mm).

