adc/amplitude calibration of the CAEN-V1742 board / DRS4 chip

Deb Sankar Bhattacharya 19 Jan 2023

Setup:

TELEDYNE LECROY

An example Pulse of 400 mV

- pk-pk mean vale = 400 mV
- rms at high state = ~1.5 mV

List of Pulses used

- -300 mV
- -200 mV
- o mV
- 200 mV
- 300 mV

Setup:

The pulses applied for calibration

the High State (i.e., +200 mV) or the Low State (i.e., 0 mV)

Procedure:

The events does not start from a certain fixed cell ID. However, at the end, the amplitude correction for all the cells of a channel is stored in an organised set. **Run 1 (Ch_i):**

Event 0						Event 1						
4	5	6	•••	2	3		324	325	326	•••	322	323

Run 1 (Ch_i):

Cells are organised event-by-even for a Run

(a manual check is done with 3 events to validate the code)

Event 0

Event 1

0	1	2	•••	1022	102:

working with ~ 1000 events, Data file = ASCII

Procedure:

The events does not start from a certain fixed cell ID. However, at the end, the amplitude corrections will be presented in an organised set.

Run 1 (Ch_0), X mV:

- Number of events ~ 1000 events, Data file = ASCII

Ch#O :: Calibrating each Cell

Calibration plots for all 1024 cells are printed for documentation

Ch#1:: Calibration example

Ch#O :: Slope (adc/mV) and Offset (adc) profile

Ch_0: Slope (adc/mV) vs CELLs

averaged over 1000 Event

Offset

Ch_0: Offset (adc) vs CELLs

Results:

Ch#O :: Slope (adc/mV) and Offset (adc) histogram

averaged over 1000 Event

Slope

Ch_0: Slope (adc/mV) distribution of the Cells

Results:

Ch#O :: Correction (adc) Calculation

(correction)^{cell#0} = (fit_offset)^{cell#0} - (adc_0mV)^{cell#0}

distribution of corrections for 1024 cells of Ch 0

Incorporating calibration to the Analysis Framework

All adc-calibration related data will be contained in V1742_adc_calibration.root

Checking for any bias in the calibration

Checking for any bias in the calibration

Checking for any bias in the calibration

A movie showing the distribution of residuals for the first 24 cells of channel o

cell#i

 $(residual)_{X_mV} = (mean_adc)_{X_mV} - (fit_adc)_{X_mV}$

Channel#0 Cell#0

- I have done, so far, calibration for only 2 channels (Ch#O, Ch#1)
- All calibration data have been collected
- If the analysis is ok, I will complete it for the rest of the channels

Thank you!

Suggested results from the discussion on 19 Jan 2023

24 Jan 2023

(Chi²/ndf) for each cell

Ch_0: χ^2 /ndf from all cells

For a few cells, the calibration fits are away from 'mean good quality'

distribution of (chi²/ndf)

how ever the distribution seems to be quite expected

Ch_0: χ^2 /ndf from all cells

Offset for all odd/even cells in different colours

obviously, something is there!

Ch_0: Offset for odd/even Cells

Offset for all odd and even cells separately

Ch_0: Offset for odd/even Cells

The band structure in offset exists only for the even cells!

Ch_0: Offset for odd/even Cells

Why.

distribution of Offset for all odd and even cells separately

Clearly even cells contributes larger rms to the global offset distribution

Slope for odd/even cells in different colours

Ch_0: Slope for odd/even Cells

Slope for all odd and even cells separately

Ch_0: Slope for odd/even Cells

There is not much difference in odd/even cells for slopes

Ch_0: Slope for odd/even Cells

distribution of Slopes for all odd and even cells separately

 $n_{d} = 1, 3, 5, ..., 1023$

Slope Odd cells

n_even = 0, 2, 4, ..., 1022

Slope Even cells

There is not much difference in odd/even cells for slopes

Thank you again !