

Measurement of the ¹⁶⁰Gd(n, γ) cross section at n_TOF

M. Mastromarco, A. Mazzone, A. Manna, S. Amaducci, A. Mengoni, C. Massimi, N. Colonna, G. Tagliente, S. Cristallo

Motivations

U Abbondanno *et al.* (The n_TOF Collaboration), <u>Phys. Rev. Lett.</u> **93**, 161103 (2004) S. Marrone *et al.*, (The n_TOF Collaboration) <u>Phys. Rev. C</u> **73**, 034604 (2006)

A. Mazzone et al. (The n_TOF Collaboration), Physics Letters B 804, 135405 (2020)

M. Mastromarco et al. (The n_TOF Collaboration), EPJA 55, 9 (2019)

Dy 154 3.0 · 10 ⁶ a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2.329	Dy 161 18.889	Dy 162 25.475	Dy 163 24.896	Dy 164 28.260	Dy 165
α 2.87	ε β ⁺ 0.9; 1.1 γ 227	σ 33 σ _{n, α} <0.009	€ γ 326	σ33 σ _{n, α} <0.006	€ γ 58; e [—] σ 8000	σ 60 σ _{n, α} <0.0003	σ 600 σ _{n, α} <1E-6	σ 170	σ 120 σ _{n, α} <2E-5	σ 1610 + 1040	β 0.9; 1.3 1.0 γ 95; γ 515 (362) σ 2000 σ 3500
Tb 153 2.34 d	Tb 154 23 h 9.0 h 21 h	Tb 155 5.32 d	Tb 156	Tb 157 99 a	Tb 158	Tb 159 100	Tb 160 72.3 d	Tb 161 6.90 d	Tb 162 7.76 m	Tb 163 19.5 m	Tb 164 3.0 m
ε β+ γ 212; 170; 110; 102; 83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ε γ 87; 105; 180; 262	Fy 88 € θ" y 534; € 199; Iy 50 β* 1222 θ" β"?	е ү(54) е	6 ⁵ 9 ⁴⁴ 9 ⁵ 9 ⁶² ; 80	σ 23.2	β ⁻ 0.6; 1.7 γ879; 299; 966 σ 570	β 0.5; 0.6 γ 26; 49; 75 e	β 1.4; 2.4 γ 260; 808; 888	β ⁺⁻ 0.8; 1.3 γ 351; 390; 494	β 1.7; 3.0 γ 169; 755; 215; 688; 611
Gd 152	Gd 153 239.47 d	Gd 154 2.18	Gd 155 14.80	Gd 156 20.47	Gd 157 15.65	Gd 158 24.84	Gd 159 18.48 h	Gd 160 21.86	Gd 161 3.66 m	Gd 162 8.2 m	Gd 163 68 s
1.1 · 10 ¹⁴ a α 2.14; σ 700 σ _{n, α} <0.007	ε γ97; 103; 70 σ 20000 σ _{n. α} 0.03	ur 60	σ 61000 σ _{n, α} 0.00008	σ~2.0	σ 254000 σ _{n, α} <0.05	a 2.3	β 1.0 γ364; 58	σ1.5	β 1.6; 1.7 γ 361; 315; 102 σ 20000	β 1.0 γ442; 403	β γ 288; 214; 1562; 1685
Eu 151 47.81	Eu 152 96 m 9.3 h 13.33 a	Eu 153 52.19	Eu 154 46.0 m 8.8 a	Eu 155 4.761 a	Eu 156 15.2 d	Eu 157 15.18 h	Eu 158 46 m	Eu 159 18.1 m	Eu 160 42 s	Eu 161 26 s	Eu 162 10.6 s
or 4 + 3150 + 6000	8 ⁻¹⁹	σ 300 σ _{n, α} 1E-6	F 0.6: 1.8 €, γ 123 1274, 723, 105 101 ≠ 1500	β 0.17; 0.25 γ87; 105 σ 3900	β 0.5; 2.4 γ812; 89; 1231	β 1.3 γ 64; 411; 371; 619	β 2.4; 3.4 γ 944; 977; 80; 898	β 2.6 γ 68; 71; 79; 96; 103	β 4.1 γ 173; 515; 412; 822	β ⁻ γ72-314	β γ71; 165
Sm 150 7.38	Sm 151 93 a	Sm 152 26.75	Sm 153 46.27 h	Sm 154 22.75	Sm 155 22.4 m	Sm 156 9.4 h	Sm 157 8.11 m	Sm 158 5.51 m	Sm 159 11.4 s	Sm 160 9.6 s	Sm 161 4.8 s
or 102	β ⁻ 0.1 γ(22); e ⁻ σ15200	rr 206	β 0.7; 0.8 γ 103; 70 σ 420	or 7.5	β 1.5 γ 104; 246; 141	β 0.7 γ204; 88; 166 e	β 2.4 γ 198; 196; 394	β γ 189; 364; 325	β γ 190; 862; 254; 797; 179	β ⁻ γ 110	β ⁻ γ 264

Motivations

U Abbondanno *et al.* (The n_TOF Collaboration), <u>Phys. Rev. Lett. **93**</u>, 161103 (2004) S. Marrone *et al.*, (The n_TOF Collaboration) <u>Phys. Rev. C **73**, 034604 (2006)</u>

A. Mazzone et al. (The n_TOF Collaboration), Physics Letters B 804, 135405 (2020)

M. Mastromarco et al. (The n_TOF Collaboration), EPJA 55, 9 (2019)

¹⁶¹Tb is a clinically interesting isotope for theranostics

Dy 154 3.0 · 10 ⁶ a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2.329	Dy 161 18.889	Dy 162 25.475	Dy 163 24.896	Dy 164 28.260	Dy 165
α 2.87	ε β ⁺ 0.9; 1.1 γ 227	σ 33 σ _{n, α} <0.009	ε γ 326	σ33 σ _{n, α} <0.006	ε γ 58; e σ 8000	σ 60 σ _{n, α} <0.0003	σ 600 σ _{n, α} <1E-6	or 170	σ 120 σ _{n, α} <2E-5	or 1610 + 1040	β 0.9; 1.3 1.0 γ 95; γ 515 (362) σ 2000 σ 3500
Tb 153 2.34 d	Tb 154 23 h 9.0 h 21 h	Tb 155 5.32 d	Tb 156	Tb 157 99 a	Tb 158 10.5 s 180 a	Tb 159 100	Tb 160 72.3 d	Tb 161 6.90 d	Tb 162 7.76 m	Tb 163 19.5 m	Tb 164 3.0 m
ε β+ γ 212; 170; 110; 102; 83	ε; hy ε ε ε γ248; hy β* 347; y123; y123; 123; 1420; 248; 1274; 1274; 123 640	€ γ 87; 105; 180; 262	fγ88 € e γ534; € 199; iγ50 β ⁺ e β ⁻ ?	ε γ(54) e ⁻	t _γ (110) e ⁻ 962; 80	σ 23.2	β 0.6; 1.7 γ 879; 299; 966 σ 570	β 0.5; 0.6 γ 26; 49; 75 e	β ⁼ 1.4; 2.4 γ 260; 808; 888	β ⁺⁻ 0.8; 1.3 γ 351; 390; 494	β 1.7; 3.0 γ 169; 755; 215; 688; 611
Gd 152 0.20	Gd 153 239.47 d	Gd 154 2.18	Gd 155 14.80	Gd 156 20.47	Gd 157 15.65	Gd 158 24.84	Gd 159 18.48 h	Gd 160 21.86	Gd 161 3.86 m	Gd 162 8.2 m	Gd 163 68 s
1.1 · 10 ¹⁴ a α 2.14; σ 700 σ _{n, α} <0.007	ε γ97; 103; 70 σ 20000 σ _{n. α} 0.03	1760	σ 61000 σ _{0, α} 0.00008	σ~2.0	σ 254000 σ _{n, α} <0.05	σ2.3	β 1.0 γ364; 58	or 1.5	γ 361; 315; 102 σ 20000	β 1.0 γ 442; 403	β γ288; 214; 1562; 1685
Eu 151 47.81	Eu 152 96 m 9.3 h 13.33 a	Eu 153 52.19	Eu 154 46.0 m 8.8 a	Eu 155 4.761 a	Eu 156 15.2 d	Eu 157 15.18 h	Eu 158 46 m	Eu 159 18.1 m	Eu 160 42 s	Eu 161 26 s	Eu 162 10.6 s
(r 4 + 3150 + 6000	17 90 953 344 	σ 300 σ _{n, α} 1E-6	ε; γ 123 1274; 723; 105 101 σ 1500	β ⁺⁻ 0.17; 0.25 γ87; 105 σ 3900	β 0.5; 2.4 γ812; 89; 1231	β 1.3 γ64; 411; 371; 619	β 2.4; 3.4 γ 944; 977; 80; 898	β 2.6 γ 68; 71; 79; 96; 103	β 4.1 γ 173; 515; 412; 822	β ⁻ γ72-314	β γ71; 165
Sm 150 7.38	Sm 151 93 a	Sm 152 26.75	Sm 153 46.27 h	Sm 154 22.75	Sm 155 22.4 m	Sm 156 9.4 h	Sm 157 8.11 m	Sm 158 5.51 m	Sm 159 11.4 s	Sm 160 9.6 s	Sm 161 4.8 s
σ 102	β ⁻ 0.1 γ(22); e ⁻ σ 15200	or 206	β 0.7; 0.8 γ 103; 70 σ 420	σ7.5	β 1.5 γ 104; 246; 141	β 0.7 γ 204; 88; 166 e	β 2.4 γ 198; 196; 394	β γ 189; 364; 325	β γ 190; 862; 254; 797; 179	β γ 110	β γ 264
9/27	/2022			Ma	ario Mastromaro	co @ ND 2022. l	JSA				3

Motivations: Terbium-161

• Chemically similar to Lutetium-177 (used in the ranostic as γ and β^{-} emitter)

• Similar half-life $T_{1/2}$ = 6.9 d (against 6.7 d of Lu-177)

In addiction to being a γ and β^- emitter (like Lu-177), Terbium-161 is also an emitter of Auger and conversion electrons;

The higher LET (compared to Lu-177) can be effective in reducing the survival probability of tumors cells.

Motivations: State of the Art

Exp. Data and Main Evaluations

Incident neutron data / / Gd160 / / Capture Reaction

MACS @ kT=30 keV source: https://exp-astro.de/kadonis1.0/

✓ List of all available values								
original	renorm.	year	type	Comment		Ref		
200 ± 13		1992	с	VdG, TOF, ⁶ Li, ¹	¹⁰ B+Au:B-V	BKP92		
144 ± 14	142	1984	с	VdG, Act., 1/v(Au:657mb(25k ¹⁶¹ Tb	(kT), keV) ¹⁶⁰ Gd(n,gamma) ¹⁶¹ Gd beta decay of	BKY84		
192 ± 19	178	1978	b	VdG, TOF, ¹⁰ B:	:Mag75, Au:628mb(kT=30keV)	KYP78		
290 ± 41 23keV	218	1973	с	Sb-Be, Act., 1/	/v(E), ¹²⁷ I:836mb(23keV)	SSR73		
15 ± 7 25keV	12	1972	с	Sb-Be, Act., 1/	/v(E), ¹²⁷ I:832mb(25keV)	TRK72		
100 ± 30		1971	e			AGM71		
171.3		2006	e			endfb7		
230.4		2004	e			jeff31		
164.5		2002	e		> 30% discrepancy	jendl33		
167		2000	t		> 30% discrepancy	RaT99		
265		1981	t			Har81		
171		1976	t			HWF76		
207		2002	t	MOST 2002		Gor02		
174		2005	t	MOST 2005		Gor05		

Original:MACS [$<\sigma v > /v_T$] (mb) for kT=30 keV, based on the published cross sections except where indicated otherwise.

Renorm:MACS [$\langle \sigma v \rangle / v_T$] (mb) for kT=30 keV for which the reference or standard cross section was meanwhile improved.

Type: The letters and numbers in the column labelled 'type' give information on how the cross section has been obtained:

c Directly quoted from the reference itself

b Calculated from smooth cross sections with model fit: $ln(sigma) = a + a1 ln(E) + a2 ln^2(E)$

e Evaluated value taken directly from the reference

t Theoretical value

Experimental Setup @ EAR1 and EAR2 (n_TOF)

Liquid scintillation detectors with **deutered benzene:** (C6D6 & STED)

- Low neutron sensitivity
- Low γ-ray detection efficiency

The **total energy detection principle** by combining the detection system with the so-called **Pulse Height Weighting Technique (PHWT)**

P. Schillebeeckx et al., Nucl. Data Sheets **113**, 3054 (2012) A. Borella, G. Aerts, F. Gunsing et al., Nucl. Instr. Meth. A **577**, 626 (2007)

EAR1

- Flight Path: 185 m
- Flux: **10⁶/cm²/Proton Bunch**
- Very High Resolution: < 10⁻³

Experimental Setup @ EAR1 and EAR2 (n_TOF)

Liquid scintillation detectors with **deutered benzene:** (C6D6 & STED)

- Low neutron sensitivity
- Low γ-ray detection efficiency

The **total energy detection principle** by combining the detection system with the so-called **Pulse Height Weighting Technique (PHWT)**

P. Schillebeeckx et al., Nucl. Data Sheets **113**, 3054 (2012) A. Borella, G. Aerts, F. Gunsing et al., Nucl. Instr. Meth. A **577**, 626 (2007)

EAR1: 4 C6D6 & me

Experimental Setup @ EAR1 and EAR2 (n_TOF)

Liquid scintillation detectors with **deutered benzene:** (C6D6 & STED)

- Low neutron sensitivity
- Low γ-ray detection efficiency

The **total energy detection principle** by combining the detection system with the so-called **Pulse Height Weighting Technique (PHWT)**

P. Schillebeeckx et al., Nucl. Data Sheets **113**, 3054 (2012) A. Borella, G. Aerts, F. Gunsing et al., Nucl. Instr. Meth. A **577**, 626 (2007) EAR2: 2 C6D6 + 9 STED

EAR1: C₆D₆ Stability (Cs-137, Y-88, AmBe)

Simulations: Setup geometry, Source simulations

Tuesday,

Simulations: Setup geometry, Source simulations

11

Simulations: Setup geometry. Source simulations

12

Y-88

Simulations: Setup geometry, Source simulations

13

MAM1: Last Results

Chiara Beltrami, M. Mastromarco, S. Altieri, N. Colonna

BaTMAN

Copyright (C) 2021 Davide Chiesa (University and INFN of Milano - Bicocca)

- Bayesian statistical approach to unfold the neutron flux
- Each flux group Φ_i is determined by sampling the *Joint Posterior* PDF $p(\Phi_i / R_i \sigma_{ii})$
- The JAGS tool for Bayiesian analysis to define the statistical model and sampling the *Posterior* PDF (Markoc

Chains Monte Carlo simulations).

Program available here: https://github.com/davidechiesa/BaTMAN

Apparato MAM1

- Utilizzati i risultati finali delle misure di attivazione dei target (Elisso)
- Utilizzate correzioni di Self-Shielding calcolate (io) e simulate con MCNP (S. Altieri e C. Beltrami)
- Utilizzate sezioni d'urto ENDF (fino a 20 MeV) e TENDL ad alte energie con diverse estrapolazioni (**Elisso**)

Input Data/Parameters

# XS_name	SSA (Bq/g)	Err (Bq/g)	g/mol	I.A.	SelfShielding
Cd114_ng_endf.dat	2.1443E+04	4.9936E+02	112.41	0.2873	Cd_ss.dat
Sc45_ng_endf.dat	5.3808E+05	1.7393E+04	44.96	1.0000	Sc_ss.dat
Au197_ng_endf.dat	9.4344E+05	1.9072E+04	196.97	1.0000	Au_ss.dat
W186_ng_endf.dat	1.6077E+05	4.1008E+03	183.84	0.2843	W_ss.dat
In113_ng_endf.dat	5.3850E+04	1.3178E+03	114.82	0.0429	In_ss.dat
Co59_ng_endf.dat	6.9178E+05	1.4334E+04	58.93	1.0000	Co59_ss.dat
Au197_n2n_tendl.dat	1.1890E+04	2.4211E+02	196.97	1.0000	NoSelfShield
Au197_n4n_tendl.dat	6.0226E+03	1.7010E+02	196.97	1.0000	NoSelfShield
Ni58_np_tendl.dat	2.6686E+04	5.4590E+02	58.69	0.6808	NoSelfShield
Ni58_n2n_tendl.dat	1.9417E+03	7.2903E+01	58.69	0.6808	NoSelfShield
Al27_na_tendl.dat	6.5584E+03	1.4804E+02	26.98	1.0000	NoSelfShield
Co59_n2n_tendl.dat	1.8362E+04	3.7727E+02	58.93	1.0000	NoSelfShield
#Co59_n3n_tendl.dat	6.8103E+03	3.7408E+02	58.93	1.0000	NoSelfShield
Bi209_n3n_tendl.dat	1.1242E+04	1.5384E+03	208.98	1.0000	NoSelfShield
Bi209_n4n_tendl.dat	5.1545E+03	1.0299E+02	208.98	1.0000	NoSelfShield
Bi209_n5n_tendl.dat	3.5429E+03	1.8338E+02	208.98	1.0000	NoSelfShield

FLUKA Simulations by M. Cecchetto

MATTEO, M81-nomod-27

8 Energy Groups

Energy groups						
Group number	Energy range (MeV)					
1	$2.0 \cdot 10^{-9} - 1.3 \cdot 10^{-7}$					
2	$1.3 \cdot 10^{-7} - 3.7 \cdot 10^{-5}$					
3	$3.7\cdot 10^{-5} - 4.5\cdot 10^{-4}$					
4	$4.5 \cdot 10^{-4} - 1.1 \cdot 10^{-1}$					
5	$1.1 \cdot 10^{-1} - 7$					
6	7 - 10					
7	10 - 32					
8	32 - 63					

Reaction for Group

Saturation Activity of radiative capture reactions and treshold reactions							
Foil	Reaction	$T_{\frac{1}{2}}$	${ m E}_{\gamma}({ m keV})$	SA(Bq)			
W	$^{186}\mathrm{W}(n,\gamma)^{187}\mathrm{W}$	24.00 h	685.77	$(1.89\pm 0.04)\cdot 10^5$			
\mathbf{Sc}	$^{45}{ m Sc}(n,\gamma)^{46}{ m Sc}$	83.79 d	1120.55	$(4.32 \pm 0.09) \cdot 10^3$			
Au-1	$^{197}\mathrm{Au}(n,\gamma)^{198}\mathrm{Au}$	$2.6941 { m d}$	411.80	$(6.27 \pm 0.11) \cdot 10^4$			
Au-3	$^{197}\mathrm{Au}(n,\gamma)^{198}\mathrm{Au}$	$2.6941 { m d}$	411.80	$(1.22\pm 0.02)\cdot 10^4$			
Au-4	$^{197}\mathrm{Au}(n,\gamma)^{198}\mathrm{Au}$	$2.6941 { m d}$	411.80	$(2.31 \pm 0.04) \cdot 10^4$			
Co	$^{59}\mathrm{Co}(n,\gamma)^{60}\mathrm{Co}$	$1925.28 \ d$	1332.50	$(2.68 \pm 0.05) \cdot 10^4$			
In	$^{113}\mathrm{In}(n,\gamma)^{114m}\mathrm{In}$	49.51 d	190.29	$(2.54\pm 0.06)\cdot 10^4$			
Au-6	$^{197}\mathrm{Au}(n,\gamma)^{198}\mathrm{Au}$	$2.6941 { m d}$	411.80	$(2.14\pm 0.04)\cdot 10^{6}$			
Cd	$^{114}\mathrm{Cd}(n,\gamma)^{115}\mathrm{Cd}$	53.46 h	527.90	$(2.24\pm 0.05)\cdot 10^4$			
Ni	$^{58}\mathrm{Ni}(n,p)^{58}\mathrm{Co}$	70.86 d	810.78	$(1.57\pm 0.03)\cdot 10^4$			
Ni	$^{58}\mathrm{Ni}(n,2n)^{57}\mathrm{Ni}$	$35.60 \ h$	1377.63	$(1.14\pm 0.02)\cdot 10^3$			
Co	$^{59}\mathrm{Co}(n,2n)^{58}\mathrm{Co}$	70.86 d	810.78	$(6.40\pm0.11)\cdot10^2$			
Au-4	$^{197}\mathrm{Au}(n,2n)^{196}\mathrm{Au}$	$6.1669 { m d}$	355.68	$(1.77\pm 0.03)\cdot 10^2$			
Au-1	$^{197}\mathrm{Au}(n,2n)^{196}\mathrm{Au}$	$6.1669 \ d$	355.68	$(7.73 \pm 0.13) \cdot 10^2$			
Au-3	$^{197}\mathrm{Au}(n,2n)^{196}\mathrm{Au}$	$6.1669 { m d}$	355.68	$(1.70\pm 0.03)\cdot 10^2$			
Au-6	$^{197}\mathrm{Au}(n,2n)^{196}\mathrm{Au}$	$6.1669 { m d}$	355.68	$(6.59 \pm 0.14) \cdot 10^2$			
Al	$^{27}\mathrm{Al}(n,lpha)^{24}\mathrm{Na}$	$15.00 \ h$	1368.63	$(1.13\pm 0.02)\cdot 10^3$			
Bi	$^{209}{ m Bi}(n,3n)^{207}{ m Bi}$	31.55 y	1063.66	$(1.24 \pm 0.17) \cdot 10^4$			
Au-1	$^{197}\mathrm{Au}(n,4n)^{194}\mathrm{Au}$	38.02 h	328.46	$(3.95\pm0.09)\cdot10^2$			
Bi	$^{209}\text{Bi}(n, 4n)^{206}\text{Bi}$	6.243 d	803.10	$(5.63 \pm 0.09) \cdot 10^3$			

Unfolding Results (C. Beltrami)

TO DO:

- Ottimizzazione della scelta gruppi di energia
- Correzioni campioni periferici
- Correzioni per stati metastabili per alcuni isotopi
- Ottimizzazione sezioni d'urto ad alte energie
- Confronto risultati con gli altri apparati (MAM2 E ANTILOPE)

Conclusions:

- Discrepancy at the 4° group is mainly due to the small contribution of the (n,γ) cross section reactions
- A possible attempt to improve the unfolding procedure is to try to extend the number of the energy groups in which dividing the neutron spectrum
- Try to improve the extraction of the cross section at higher energy

Molto probabilmente le discrepanze ad alte energia sono dovute alle simulazioni del flusso con FLUKA (vedasi flusso in EAR1 e EAR2)