Searching for X17 anomaly at **INTOF** experiment

X17 ATOMKI RESULTS IN A NUTSHELL

-A significant excess of electron-positron pairs at large relative angle has been recently observed in the ⁷Li(p,e⁺e⁻)⁸Be and ³H(p,e⁺e⁻)⁴He reactions. -This anomaly has been interpreted as the signature of a 17 MeV BOSON, not foreseen in the standard model of particle physics.

-The so called X17 boson could be a mediator of a fifth force, characterized by a strong coupling suppression of protons compared to neutrons.

-This evidence/scenario is presently not confirmed or excluded by other experiments or groups.

Krasznahorkay, A.J.; et al.:

"Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson".

Physical Review Letters. 116 (42501): 042501 (2016).

Krasznahorkay, A.J.; et al.:

"New anomaly observed in ⁴He supports the existence of the hypothetical X17 particle". <u>*Physical Review C*</u>. **104**, 044003 (2021)

X17 @ nToF

Physics:

- Probing X17 existence
- X17 Mass, quantic numbers, coupling, life time,...
- First measurement of $\sigma(E)$ ³He(n,e⁺e⁻)⁴He
- Data Vs Theoretical nuclear physics

³H(p,e⁺e⁻)⁴He setup @ ATOMKI

- ✤³H adsorbed on Ti layer
- ✤6 plastic scintillator 82x86x80 mm³
- 6 double-sided silicon strip detector (3 mm wide strips, 0.5 mm thick)
- 1 mm thick carbon fiber tube
- Detector acceptance only around 90° with respect to the beam axis
 no tracking

X17 @ nToF

***** Wide energy range (proton and neutron beams) to explore all resonances with different J^{π}

courtesy M. Viviani

X17 @ nToF

Wide energy range (proton and neutron beams) to explore all resonances with different J^π Large detector acceptance (statistics and kinematics)

M. Viviani et al.:

"X17 boson and the 3H(p, e+e-) 4He and 3He(n, e+e-) 4He processes: A theoretical analysis" PHYSICAL REVIEW C **105**, 014001 (2022)

courtesy M. Viviani

Backgrounds

- Internal Pair Convertion (IPC) through the ³He(n,e+e-)⁴He process (virtual gammas convert into e+e- pairs). Most of the pairs can be cut off because of their small relative angle.
- External Pair Convertion (EPC), i.e. ³He $(n,\gamma)^4$ He gammas converted into e+e- pairs in the material sorrounding the target. Also in this case, small relative angle between e+e- pairs.
- Gammas from ³He $(n,\gamma)^4$ He.
- protons from (n,p) reactions.
- neutrons interacting with setup.

X17 SIGNAL AND (irreducible) BACKGROUND

target: ³He at P=30 bar, T= 300 k

thickness of Carbon fibre= 1 mm

Multiple scattering included

IPC background included

DATA From M. Viviani ab-initio calculations, normailzed to the ATOMKY results

courtesy A. Mazzone

100 SiPM mod.S13363-3050-16=19k + IVA 32 PMT ALTA CORRENTE=32k + IVA 32 EJ200 "BULK" 10X10X10 CM3= 8k + IVA (LAVORAZIONE?) 160 STRIPS 0,3X1X40 cm³= 0,125 k +IVA (10 k+IVA lavorazione) 320 ch (bacchette)+32 ch bulk =350 ch = 17,5 k +IVA TOTALE: 86,5 k

LYSO

Ej-200

0

2

1 planes of 25x10x2 cm3, composed by 5 bars 25x2x2 cm3x4,8x0,3 cm 5 channels

1

B

Jane

uRwell

2 uRwell with 30x30 cm2 active area

Each uRwell has:

- 512 horizonatl strips
- 4 Front-end cards (APV25)
- The APV25 stores the charges of 128 strip every 25 ns (one time sample)

μTPC : Test at EAR2

*with Ar/CO*₂=/*CF*4=60/20/20 1/*W*_{drift} ~ 10 ns/mm →60 ns signals (6 mm gap)

Goal of the test: Background evaluation Gamma Flash interactions with materials

SETUP

uRwell online signals

- Each uRwell has 512 strips (horizontal) readout by 4 Front-end cards (APV25)
- The APV25 stores the charges of 128 strip every 25 ns (one time sample)

Gamma flash on uRwells

Signals in uRwell at gamma flash + 1.7 us

green are clear signals, red probably smaller signals

LYSO, EJ-200, BrCL₃

Faint signals due to huge Gamma Flash

LYSO, EJ-200, BrCL₃

TEST at EAR2

TO DO (By Evaristo)

- Finalize analysis code
 - common mode subtraction
 - clustering (time and space)
 - get consolidated code from uRwell/uMegas experts
- Integrate and synchronize scintillators and nTOF run data (e.g. single trigger beam intensity)
- Define relevant parameters and compare different conditions:
 - targets / no targets
 - flipped configuration
 - time windows
- Proper (high current) PMT (SiPM) and/or current drain to limit the gamma flash current
- . Comparison with MC
- Analysis (energy linearity, energy resolution...)

It seems desirable a short test at EAR2, to validate electronics against gamma flash

TO DO

-Test a EAR2 per validare l'elettronica per eventi vicino (~0.5 ms) al gamma flash

- -Test con raggi cosmici, per caratterizzare i rivelatori (energia, tracking)
- -Test a LNL con protoni su bersaglio LiO_2 , per caratterizzare il rivelatore con e⁺e⁻ p+7Li \rightarrow 8B ma (soprattutto p+¹⁶O \rightarrow ¹⁷F* \rightarrow ¹⁷F+e⁺e⁻)
- -costruzione dimostratore (impegni nel 2022)
- -Lavoro teorico (reazioni 1+1, 1+2, 1+3)
- -Proposta (misure con nuovo rivelatori)
- -Contatti altre Facility (ENEA, Demokritos, iThemba)
- -Simulazioni GEANT
- -POST DOC?
- -Pubblicazioni/presentazioni
- -Targhette 3He (in collaborazione con gruppo criogenia (CERN)

D(n,X17)³He and D(p,X17)³H reactions

The D(p,X17)³He and D(n,X17)³H reactions can be exploited

Thresholds for the production of a 17 MeV boson are shown

Comparison of A=3 nuclei "decay"

p/n+D-->gamma+3He/3H

²H(p/n,γ)³He/³H cross/sections are very similar. The A=3 nuclei are well suited for abinitio calculations, giving well defined prediction for IPC/X17 ²H(p/n,e+e-)³He/³H processes. in particular the production of X17→e+e- is favoured for Tritium with respect to ³He, in case of the protophobic 5th force. Proton and neutron beams with E_{beam}>16 MeV are needed for such a program.

Demokritos facility

Example: 1 measurement at 0 and one at 90 degree with $E_d=2,49$ MeV

Demokritos facility

Neutron Beam Test at Demokritos

- Neutron energies up to 25 MeV depending on the initial reaction
- Neutrons of 5.5 MeV with fluxes up to 1.5 x 10⁶ n/cm² s

Nuclear Reaction	Proton/Deuteron Energy Range (MeV)	Neutron Energy Range (MeV)	Neutron fluences can reach ~5x10 ⁶ neutrons/cm ² s but for	
⁷ Li(p,n) ⁷ Be	1.9 to 8.4	0.1 to 6.7*	d-³H is lower an order of magnitude compared to the d-	
² H(d,n) ³ He	0.8 to 8.4	3. 9 to 11.5 **	² H reaction due to cross section energy dependence	
³H(d,n)⁴He	0⊦8 to 8.4	16.4 to 25.7***		

- used to test ATLAS MDT's
- for the upgrade of the ATLAS NSW TGC's & Micromegas were (and will be) tested
- GEM detectors were tested

at 2 cm from the 3H target: 10⁵ n/cm²s

HAMAMATSU

MPPC (Multi-Pixel Photon Counter) arrays

S13363-3050NE-16

Dimensional outline (unit: mm)

Buongiorno Carlo,

ho ricevuto oggi la quotazione ed i tempi di consegna per l'array S13363-3050NE-16. Ti riporto di seguito i costi per scaglione (legame cambio 1€=135JPY):

	1pce	5pcs	10pcs	50pcs	100pcs
S13363-3050NE-16	290,40 €	254,40 €	220,80 €	188,40 €	159,60 €

I tempi di consegna sia per i campioni che per 100pcs sono di circa 4mesi.

Non esitare a contattarci per ulteriori informazioni.

Cordiali Saluti

Massimo

ACCEPTANCE: Theta_x,y|<76 degrees (2 planes 40x40 cm2, each at a distance of 5 cm from the beam axis)

- #coppie rivelate
- IPC: 59%
- X17: 47%

|Theta_x|<63.4 degrees -> (cylinder 20 cm long with a radius of 5 cm)

- #coppie rivelate
- IPC: 75%
- X17: 58%

Target

0.6 mm thick envelope of Carbon Fibre will be tested to operate with ³He at 380 bar, 300 K. This pressure corresponds to 59 g/L (density of liquid ³He)

courtesy P. Mastinu

Energy deposition as a function of time of flight (by Cristina Petrone)

