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be seen from the actual re-derivation of QFT. Apart from a matter of taste related to the

circuit as an ontology, the two crucial criteria will be Occam razor and mathematical

simplicity. I must however emphasize that in any case the QCFT program remains a

must, and this for at least two reasons. The first reason is that QCFT solves a number

of logical and mathematical problems that plague QFT [3, 4], besides allowing a unified

framework for different fields, giving a mechanism for relativistic invariance, and, last

but not least, providing a systematic way for consistently generalizing the whole theo-

retical framework in view of Quantum Gravity, e. g. moving to higher order input-output

computation with no pre-established causal relations by changing QM toward an oper-

ational noncausal theory with purification. All these nice features may motivate even
to adopt QCFT in place of QFT, QFT being still operationally and logically not well

founded (see e. g. the Poisson-bracket quantization rules, the Feynman path integral, the

Grassman variables, ...) We will discuss these issues more at the end of the paper. The

second reason is that QCFT represents the first test of the Lucien Hardy’s program of an

operational approach to Quantum Gravity. In fact, before building up a theory of Quan-

tum Gravity, we first should check the approach against a well assessed phenomenology,

such as that of particle physics (this would also be much easier than deriving a theory

of Quantum Gravity) QCFT would also bring the powerful point of view of Quantum

Information inside the world of particle physics.

2. THE OPERATIONAL FRAMEWORK.

The starting point of the operational framework is the notion of test. A test is made of

the following ingredients: a) a complete collection of outcomes, b) input systems, c)

output systems. It is represented in form of a box, as follows

A1

{Ai}
B1

A2 B2

A1

A

B1

A2 B2

The left wires represent the input systems, the right wires the output systems, and

{Ai} the collection of outcomes. We often represent not the complete test, but just a
single outcomeAi, or, more generally, a subsetA ⊂ {Ai} of the collection of outcomes,
i. e. an event, as in the right box in figure. The number of wires at the input and at

the output can vary, and one can even have no wire at the input and/or at the input.

Depending on the context, the test can be regarded as a man-made apparatus or as a

nature-made physical interaction. The set of events of a test is closed under union (also

called coarse-graining), intersection, and complementation, thus making a Boolean

algebra. A refinement of an event A is a set of events {Ai} occurring in some test
such that A = ∪iAi. Generally an event can have different refinements depending on

the test to which it belongs, or it may be unrefinable within some test. An event that is

unrefinable within any test is called atomic.

The natural place for a test/event is inside a network of other tests/events, and to
understand the origin of the box representation and the intimatemeaning of the test/event

you should imagine it actually connected to other tests/events in a circuit, e. g. as follows
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The different letters A,B,C, . . . labeling the wires denote different “types of system”.
We can connect only an input wire of a box with an output wire of another box, the two

wires having the same label. Loops are forbidden. Among the different kinds of systems,

we have a special one called trivial system, denoted by I, which we conveniently

represent by no wire, but instead, by drawing the corresponding side of the box convexly

rounded as follows )*+," A := I " A , and A -./0a := A a I .

The fact that there are no closed loops gives to the circuit the structure of a DAG

(directed acyclic graph), with vertices corresponding to operations, and edges to wires.

The absence of closed loops corresponds to the requirement that the test/event is one-use

only. We also must keep in mind that there are no constraints for disconnected parts of

the network, i. e. they can be arranged freely as long as they are disconnected (this would
not be true e. g. for a quaternionic quantum network). Finally, we will also consider

conditioned tests, where one can choose a different test depending on the outcome

of an input one. The construction of the network mathematically is equivalent to the

construction of a symmetric strict monoidal category (see Ref.[5]).

In order to make predictions about the occurrence probability of events based on cur-

rent knowledge, one needs a “theory”. An operational theory [2] is specified by a col-

lection of systems, closed under parallel composition, and by a collection of tests, closed

under parallel/sequential composition and under randomization. The operational theory

is probabilistic if every test from the trivial system to the trivial system is associated to a

probability distribution of outcomes.

Therefore a probabilistic theory provides us with the joint probabilities for all possible

events for any closed network (namely with no overall input and output). The probability

itself will be conveniently represented by the corresponding network of events. We must

keep in mind that the probability of an event is independent on the test to which it

belongs, and this legitimates using networks of events, without the need of specifying

the test. In the following, we will denote the set of events from system A to system B as

T(A,B), and use the abbreviation T(A) := T(A,A).
Two wires in a circuit are input-output adjacent if they are the input and the output of

the same box. By following input-output adjacent wires in a circuit following the input-

to-output direction we draw an input-output chain. Two systems (wires) that are not
in the same input-output chain are called independent. A set of pairwise independent

systems is a slice. The slice is called global if it partitions the circuit into two parts.

By construction it is clear that a global slice always partitions a closed bounded circuit

into two parts, a preparation test and an observation test. Thus, a diagram of the form#!$"Ai
A '%(&B j generally represents the event corresponding to an istance of a

concluded experiment, which starts with a preparation and ends with an observation.

The probability of such event will be denoted as
(

B j |Ai

)

, using the “Dirak-like” nota-

Probabilistic operational 
theory: every test from the 
trivial system to the trivial 
system is associated to a 
probability distribution of 
outcomes.

test event

no loops

DAG (directed acyclic graph)
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1.1. THE OPERATIONAL FRAMEWORK 21

transformation

e. g. A ∈ T(A , B), A : |ρ)A �→ |A ρ)B. Then, every event A ∈ T(A,B) induces a

map from S(AC) to S(BC) for every system C, uniquely defined by

A : |ρ)AC ∈ S(AC) �→ (A ⊗IC) |ρ)AC ∈ S(BC). (1.30)

The map is linear from SR(AC) to SR(BC). From a probabilistic point of view, if for

every possible system C two events A and A �
induce the same maps, then they are

indistinguishable. We are thus lead to the definition of transformation.

Transformations: Equivalence classes of indistinguishable events from A to B are
called transformations from A to B.

Again, we will assume that the equivalence classes have been already done since

the start, and, consequently, we will identify events with transformations, without in-

troducing new notation. Accordingly, a test will be a collection of transformations.

Notice that generally two transformations A ,A � ∈ T(A, B) can be different even

if A |ρ)A = A � |ρ)A for every ρ ∈ S(A). Indeed one has A �= A �
different if that

there exists an ancillary system C and a joint state |ρ)AC such that

(A ⊗IC) |ρ)AC �= (A � ⊗IC) |ρ)AC. (1.31)

We will come back on this point when discussing local discriminability in Subsect. ??

Notes
The assumption of the convex closure BLA BLA. Nevertheless, we will see that for

most of our results the assumption of convexity is not essential, and we will discuss

the validity of our results in non-convex theories, like the toy-theories considered by

Spekkens in Ref. [?]. Having this in mind, whenever possible we will present our

results in a convexity-independent language.

1.1.5 The causality arrow.
Although in the networks discussed until now we had sequences of tests, such se-

quences were not necessarily temporal, or causal sequences, namely the order of tests

in a sequence was not necessarily following the causal or the time arrow.

We now introduce the causality condition, also called no signalling from the fu-
ture [D’A09] if one identifies the causal arrow with the time arrow. This allows us to

interpret the sequential composition as a causal cascade.

Causality condition 1. We say that a theory is causal, if for any two tests {Ai}i∈X

and {Bj}∈Y that are connected with at least an input of test {Bj}∈Y connected to
an output of {Ai}∈Y as follows

. . . . . . C

{Bj}
F . . .

. . . A

{Ai}
D G . . .

. . . B E . . . . . .

(1.32)

February 1, 2010
A theory is causal if for any two tests that are 
input-output connected the marginal probability 
of the input event is independent on the choice 
of the output test.

Input → Output

DAG

G. M. D’Ariano in Philosophy of Quantum 
Information and Entanglement, A. Bokulich 

and G. Jaeger (CUP, Cambridge UK, 2010).

SKIP

giovedì 30 dicembre 2010



THE PRINCIPLE OF THE QUANTUMNESS
WHAT IS INFORMATION PROCESSING?

• A computer processes the input information to produce the output one. 

• Software provides the rules for processing information written in subroutines, each 
one with its own input and output. 

• The same information processing can be achieved by different subroutines, in the 
sense that the same input-output relation is achieved by different codes.

 We will represent a processing in form of a box with wires as follows:

A

S
A�

B B�

the left/right wires represent the kind of registers on which the input/output of the 
processing are read/written, respectively (different letters denote generally different types 
of register).
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THE PRINCIPLE OF THE QUANTUMNESS
WHAT IS INFORMATION PROCESSING?

We can compose processings connecting input with outputs of the same type as 
follows: A

S1

A�

C

S2B B�

If we send the output to the input of a previously called processing we will not draw a 
loop, but instead we will redraw the same box twice, whence a box precisely 
represents a single call of the processing, and the whole circuit will 
represent the entire run, not a flow diagram. 
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THE PRINCIPLE OF THE QUANTUMNESS
WHAT IS INFORMATION PROCESSING?

For example, in evaluating the factorial we can consider the two alternatives---n=0 and n>0---
and use the subroutine “return 1” for n=0 or the subroutine “return n*f(n-1)” for 
n>0.  The subroutine for evaluating f(n) is then the collection of the two alternative 
subroutines---and the same can be said for their respective processings f(0) and f(n>0).  We 
will represent the set of alternative processings as a single box as follows

A
{Si}

A�

B B�

A subroutine can generally be divided into alternative subroutines

where      for different i represent alternative processings.  We will call the processing f(n) 
the coarse graining of the two processings  f(0)  and f(n>0).  We will name the set of 
all possible constituents of a processing its  refinement set, and call a processing with 
trivial refinement set indivisible. 

Si
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THE PRINCIPLE OF THE QUANTUMNESS
WHAT IS INFORMATION PROCESSING?

The data-input and data-output are themselves information processings---the  
initialization and readout, respectively.  They will be represented as follows

Notice that also an initialization can be divisible, and this will correspond to a random choice 
of different initializations.

{Ai}
����

A

B

C

A

{Bi}
����B

C

An initialization followed by a processing can be itself regarded as a new 
initialization ����A A

S
B ����A�

B
=
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THE PRINCIPLE OF THE QUANTUMNESS
WHAT IS INFORMATION PROCESSING?

The domain of a processing is the set of its possible initializations, its range the set 
of its possible readouts.

An initialization is specific when its refinement set is not the whole set of initializations.

Two initializations       and       are discriminable when:A2A1����A1
A ����B ����A2

A ����B�=
and the discrimination is perfect when     always occurs  for       and never 
occurs for 

B A1
A2
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES

P1. Causality: The occurrence of a component processing cannot depend on the 
choice  of the processing of its output (i. e. information flows only from input to 
output).

P2. Local Readability:  We can discriminate two initializations of multiple registers 
by readouts on single registers.

P3. Reversibility and Indivisibility of Computation: Every information 
processing can be achieved with a reversible one by adding a register in an indivisible 
initialization.

P4. Indivisibility of Processing Composition: The processing corresponding to 
the input-output sequence of two indivisible processings is itself indivisible.

P5. Discriminability of Specific Initializations: For any specific initialization 
there exists another initialization that can be perfectly discriminated from it.

P6. Lossless Compressibility: For any initialization there exists an encoding which is 
perfectly decodeable on its refinement set, and the encoded initialization is not specific.

SKIP
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES

P1. Causality: The occurrence of a component processing cannot depend on the 
choice of the processing of its output (information flows only from input to output).

P1 seems so obvious that has been systematically overlooked in the literature 
(e.g.  Hardy), whereas in fact one can construct explicitly an information-
processing theory which violates P1. It allows to “normalize” quantum states 
by multiplication by a constant. Relaxing postulate P1 may provide a natural 
framework for a theory of quantum gravity.
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES

P2. Local Readability:  We can discriminate two initializations of multiple registers 
by readouts on single registers.

P2 (Local Discriminability) is the origin of the complex tensor product in QT,  
(e.g. a QT over real Hilbert spaces would not satisfy it.)  

It plays a crucial role in reducing experimental complexity in physics, by guaranteeing that 
only local (although jointly executed) measurements are sufficient to retrieve a complete 
information of a composite system, including all correlations between the components. 

ReductionismHolism

Nonlocal experiment Local 
experiment

Local 
experiment

Local 
experiment
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES

P3. Reversibility and Indivisibility of Computation: Every information 
processing can be achieved with a reversible one by adding a register in an indivisible 
initialization.

• P3 is the synthesis of both parallelism (the indivisibility of initialization) and reversibility of 
quantum computation, the former being recognized as the main power of QT since D. 
Deutsch, the latter being one of the pillars of modern computer science since C. Bennett's. 

• It is the most “quantum” postulate 

• All postulates apart from P3 are satisfied by classical theory, P3 is not satisfied by PR boxes 

• There is currently no known theory satisfying P1, P2, and P3 apart from QT.  

• It is the basis of most quantum information protocols: 

• teleportation, 

• conditions for error correction, 

• no-cloning theorem, 

• ancilla-assisted tomography, .... 

• One can interpret the postulate as a statement of conservation of information, a la Everett. 
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THE PRINCIPLE OF THE QUANTUMNESS
POSTULATES

P4. Indivisibility of Processing Composition: The processing corresponding to 
the input-output sequence of two indivisible processings is itself indivisible.

It looks obviously true. However, there is no reason why the same processing obtained by composing two 
ones could not be itself achieved in principle by a subroutine which is divisible. 

P5. Discriminability of Specific Initializations: For any specific initialization there 
exists another initialization that can be perfectly discriminated from it.

P6. Lossless Compressibility: For any initialization there exists an encoding which is 
perfectly decodeable on its refinement set, and the encoded initialization is not specific.

This also looks obvious, however, it is easy to construct a theory that violates it.

This also looks obvious for a conventional information theory (it would mean that e.g. one can always 
encode the initializations corresponding to integers 0-7 on a register of only 3 bits without loss!) This 
principle is the starting point of Shannon's and Schumacher's compression. P6 becomes non trivial in a 
more general information-processing framework, e.g. if one has different types of registers with the 
same number of perfectly discriminable initializations.  In our derivation of QT P5 and P6 are essential 
for quantum-logical structure of QT.
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What is out of there?

giovedì 30 dicembre 2010



giovedì 30 dicembre 2010



Physics is Information
“It from 

Bit”

“Information 
is physical”

(Bit from It)
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SIMULATION OF QUANTUM 

FIELD THEORY 

BECOMES A NEW FIELD 
THEORY

The Quantumness of Relativity
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The Quantumness of Relativity
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HOW RELATIVITY EMERGES 
FROM THE COMPUTATION?
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Relativity from QT
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Relativity from QT
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causal chain = time (observer)

causal antichain = space
(from causality)
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causal chain = time (observer)

Relativity from QT
causal antichain = space
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(Alexandrov)

 

(from causality)
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WE GOT RELATIVITY FROM 
PURE CAUSALITY!

giovedì 30 dicembre 2010



WE GOT MUCH MORE: 

FROM PURE CAUSALITY  WE 
GOT SPACE AND TIME 

ENDOWED WITH RELATIVITY!
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Relativity from causality

Figure 1: Both diagrams represent the same poset of events. In these diagrams,
there is no meaning to the horizontal or vertical spacing of the events. We have
the freedom to draw the diagram so as to make chains look simple, but this is
merely illustrative. More importantly, we find that we have the similar freedom
to make chains look simple quantitatively. Note that these are not exactly Hasse
diagrams as more connections than just the covers are displayed.

for any causal relationship. Causal sets have been employed in approaches
to quantum gravity, and are typically endowed with, or embedded within, a
Minkowski geometry exhibiting Lorentz invariance [3].

We approach the problem from another direction entirely. Given that the
poset is considered to be fundamental, we aim to derive a means to quantify
events. To accomplish this, we must make some additional assumptions about
the poset structure; namely that events are sufficiently dense so that we can
always select an event that has the desired relationship to other events.

We represent an observer as a chain of events, which means that the events
are totally ordered so that they occur in succession. That is, a chain is a set of
events P such that for all events x and y in P, we have that either x ≤ y or
y ≤ x. We can imagine that the events describing an observer are created by
an event generator, or a clock.

As Figure 1 illustrates, depending on how the poset is displayed, chains
can be made to look complicated or simple. The overall goal is to develop a
description of events, and we shall do this in such a way to make chains look
simple. Since, at this point, we have no notion of an interval either in space or
time, we are at liberty to stretch and squeeze the poset so that certain events
in a chain of our choice are drawn at equally-spaced intervals. While stretching
or squeezing a diagram is merely illustrative, we will demonstrate that we have
the similar freedom to make chains look simple quantitatively.

3

K. H. Knuth, N. Bahreyni, A Derivation of 
Special Relativity from Causal Sets, arXiv:
1005.4172<http://lanl.arxiv.org/abs/
1005.4172v1> [math-ph] [v1] 23 May 2010
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Conventionality of 
simultaneity, homogeneity, ...

The causal network manifests the 
conventionality of simultaneity.

To determine simultaneity of distant 
events we need to know a speed, to 
measure a speed we need to know 
simultaneity of different events ...

We can only determine the two-way 
average speed of light ...

Reichenback ‘57

Grünbaum ‘69

Salmon ‘69

Bridgman ‘62

van Frassen ‘69

Come on!
Friedman ‘83

Malament ‘77
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A theory of quantum gravity based on quantum computation

Seth Lloyd

Massachusetts Institute of Technology

MIT 3-160, Cambridge, Mass. 02139 USA

slloyd@mit.edu

Keywords: quantum computation, quantum gravity

Abstract: This paper proposes a method of unifying quantum mechanics and gravity based

on quantum computation. In this theory, fundamental processes are described in terms

of pairwise interactions between quantum degrees of freedom. The geometry of space-

time is a construct, derived from the underlying quantum information processing. The

computation gives rise to a superposition of four-dimensional spacetimes, each of which

obeys the Einstein-Regge equations. The theory makes explicit predictions for the back-

reaction of the metric to computational ‘matter,’ black-hole evaporation, holography, and

quantum cosmology.

Quantum computation can be thought of as a universal theory for discrete quantum

mechanics. Quantum computers are discrete systems that evolve by local interactions [1],

and every discrete quantum system that evolves by local interactions, including lattice

gauge theories, can be simulated efficiently on a quantum computer [2-6] The quantiza-

tion of gravity remains one of the primary challenges to physics [7-31]. If, at bottom,

quantum gravity is a discrete, local quantum theory, then quantum gravity, too, should be

describable as a quantum computation.

Unlike conventional approaches to quantum gravity such as string theory [14], canon-

ical quantization [7], loop quantum gravity [15-20], and Euclidean quantum gravity [10]

the theory proposed here does not set out to quantize gravity directly. Gravity is a theory

based on geometry and distance: the normal approach to gravity is to quantize the metric

1
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σ = −
σ = +

|C(a, b)|± := σ|C(a, b)|

C(a, b) := {ci}N
i=1

a ≡ c1 ≺ c2 ≺ . . . cN ≡ b

a ≺ b

b ≺ a

with

signed cardinality:

where for

for

causal chain:

observer: Oa = {oi}i∈Z

oi � oi+1 ∀i ∈ Z a = o0with and
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a ∈ Jb (or b ∈ Ja). We call a CN connected if for every
a, b ∈ N there exists c ∈ Ja ∩ Jb, corresponding to the
intuitive notion of connectedness. Two events that are

a

FIG. 1: Causal network: illustration of the set of past/future
light-cone of event a.

not space-like are connected by at least a causal chain,
e. g. a # b are connected by the causal chain C(a, b)
given by C(a, b) := {ci}N

i=1, with a ≡ c1 ≺ c2 ≺ . . . cN ≡
b. Being the equivalent of a world-line, the causal chain
plays also the role of an observer. It is convenient to
orient the chain, generalizing its definition to include the
case b # a, writing C(a, b) for C(a, b) := {ci}N

i=1, with
b ≡ c1 ≺ c2 ≺ . . . cN ≡ a. The verse of the chain is
taken into account by a signed cardinality |C(a, b)|± :=
σ|C(a, b)| with σ = + for a ≺ b, and σ = − for b ≺ a.

In order to derive SR from the CN, we need the equiv-
alent of the Galileo principle [11], namely the invariance
of the physical law with the reference system. Within
a single frame the Galileo principle is just uniformity of
space and time. In the present purely topological con-
text, this translates to the topological homogeneity of the
CN, the physical law being the causal connection-rule of
the network, i. e. the tile of the causal pattern. At this
point, we need to make more specific the notion of CN,
introducing different types of links, e. g. in Fig. 2 we
have two generally different kinds of input links—the left
and the right ones—for each node. It is now convenient
to label links with letters. We then consider the input
and the output sets lin(a) = {i1(a), i2(a), . . . iK(a)} and
lout(a) = {o1(a), o2(a), . . . oH(a)} of links of an event.
We now say that a CN is topologically homogeneous if for
each couple of events a, b ∈ N one has the isomorphism
ij(a) = ij(b) and oj(a) = oj(b) for j = 1, . . .H = K. An
example of homogeneous CN is given in Fig. 2. There is
no loss of generality in considering only homogeneous CN
with H = K and with all events isomorphic: in fact, one
can always reach this situation, by grouping connected
events into single ones, i. e. by event coarse-graining.

In a homogeneous causal network we can also easily see
how causality is sufficient to guarantee a maximum speed
of “information flow”. Such speed is just “one-event per
step”, corresponding to a line at 45o in Fig. 2 (to con-
nect events along a line making an angle < 45o with the
horizontal, one needs to follow some causal connections
in the backward direction from the output to the input).

{

o

i1 i2

21o{

FIG. 2: Left: homogeneous causal network and equivalent
representation as a quantum circuit. Right: example of
coarse-graining preserving the homogeneity of the network.

We will now introduce the notion of simultaneity in
relation to an observer. The observer is just a causal
chain (conveniently taken as unbounded). We label the
events of the chain with relative numbers, choosing an
event for the zero. Hence, an observer will be denoted as
Oa = {oi}i∈Z, with oi # oi+1 ∀i ∈ Z, and with a = o0

representing the origin. The index i ∈ Z plays the role
of the observer’s proper time. Thanks to the topological
homogeneity, we can translate the observer Oa to any
event a′ ∈ N. We will denote by O the equivalence class
of all observers translated over all events of the CN. We
will also denote by Oa(b, c) the causal chain C(b, c) ⊂ Oa.
We now define simultaneity of events a and b—denoted
as a ∼O b—as follows

a ∼O b ⇐ inf
b∗∈J+b

|Oa(a, b∗)|± = inf
a∗∈J+a

|Ob(b, a
∗)|±. (2)

Depending on the shape of the observer chain, one may
have situations in which there are no synchronous events.
However, it is easy to see that for an observer that is topo-
logically homogeneous (i. e. periodic) there always exist
infinitely many simultaneous events. Moreover, modulo
event coarse-graining, without loss of generality we can
restrict only to observers with a zig-zag with a single pe-
riod, with α ≥ 1 steps to the right and β ≥ 1 steps to
the left (we will call them simply periodic). Each ziz-zag
is the equivalent of a tic-tac of an Einstein clock made
with light bouncing between two mirrors. All events on
the same mirror lay on a line, and for such events there
always exist (infinitely many) synchronous events.

The given notion of simultaneity allows us to associate
each observer with a foliation of the CN. For each event
oi ∈ Oa there is a leaf Li(Oa), which is the set of events si-
multaneous to oi with respect to the observer Oa, namely

Li(Oa) := {b ∈ N : a ∼O oi}. (3)

The collection of all leaves for all the events in Oa is the
foliation L(Oa) of N associated to the observer Oa

L(Oa) := {Li(Oa), ∀i ∈ Z}. (4)
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a, b ∈ N there exists c ∈ Ja ∩ Jb, corresponding to the
intuitive notion of connectedness. Two events that are

a
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not space-like are connected by at least a causal chain,
e. g. a # b are connected by the causal chain C(a, b)
given by C(a, b) := {ci}N

i=1, with a ≡ c1 ≺ c2 ≺ . . . cN ≡
b. Being the equivalent of a world-line, the causal chain
plays also the role of an observer. It is convenient to
orient the chain, generalizing its definition to include the
case b # a, writing C(a, b) for C(a, b) := {ci}N

i=1, with
b ≡ c1 ≺ c2 ≺ . . . cN ≡ a. The verse of the chain is
taken into account by a signed cardinality |C(a, b)|± :=
σ|C(a, b)| with σ = + for a ≺ b, and σ = − for b ≺ a.

In order to derive SR from the CN, we need the equiv-
alent of the Galileo principle [11], namely the invariance
of the physical law with the reference system. Within
a single frame the Galileo principle is just uniformity of
space and time. In the present purely topological con-
text, this translates to the topological homogeneity of the
CN, the physical law being the causal connection-rule of
the network, i. e. the tile of the causal pattern. At this
point, we need to make more specific the notion of CN,
introducing different types of links, e. g. in Fig. 2 we
have two generally different kinds of input links—the left
and the right ones—for each node. It is now convenient
to label links with letters. We then consider the input
and the output sets lin(a) = {i1(a), i2(a), . . . iK(a)} and
lout(a) = {o1(a), o2(a), . . . oH(a)} of links of an event.
We now say that a CN is topologically homogeneous if for
each couple of events a, b ∈ N one has the isomorphism
ij(a) = ij(b) and oj(a) = oj(b) for j = 1, . . .H = K. An
example of homogeneous CN is given in Fig. 2. There is
no loss of generality in considering only homogeneous CN
with H = K and with all events isomorphic: in fact, one
can always reach this situation, by grouping connected
events into single ones, i. e. by event coarse-graining.

In a homogeneous causal network we can also easily see
how causality is sufficient to guarantee a maximum speed
of “information flow”. Such speed is just “one-event per
step”, corresponding to a line at 45o in Fig. 2 (to con-
nect events along a line making an angle < 45o with the
horizontal, one needs to follow some causal connections
in the backward direction from the output to the input).
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FIG. 2: Left: homogeneous causal network and equivalent
representation as a quantum circuit. Right: example of
coarse-graining preserving the homogeneity of the network.

We will now introduce the notion of simultaneity in
relation to an observer. The observer is just a causal
chain (conveniently taken as unbounded). We label the
events of the chain with relative numbers, choosing an
event for the zero. Hence, an observer will be denoted as
Oa = {oi}i∈Z, with oi # oi+1 ∀i ∈ Z, and with a = o0

representing the origin. The index i ∈ Z plays the role
of the observer’s proper time. Thanks to the topological
homogeneity, we can translate the observer Oa to any
event a′ ∈ N. We will denote by O the equivalence class
of all observers translated over all events of the CN. We
will also denote by Oa(b, c) the causal chain C(b, c) ⊂ Oa.
We now define simultaneity of events a and b—denoted
as a ∼O b—as follows

a ∼O b ⇐ inf
b∗∈J+b

|Oa(a, b∗)|± = inf
a∗∈J+a

|Ob(b, a
∗)|±. (2)

Depending on the shape of the observer chain, one may
have situations in which there are no synchronous events.
However, it is easy to see that for an observer that is topo-
logically homogeneous (i. e. periodic) there always exist
infinitely many simultaneous events. Moreover, modulo
event coarse-graining, without loss of generality we can
restrict only to observers with a zig-zag with a single pe-
riod, with α ≥ 1 steps to the right and β ≥ 1 steps to
the left (we will call them simply periodic). Each ziz-zag
is the equivalent of a tic-tac of an Einstein clock made
with light bouncing between two mirrors. All events on
the same mirror lay on a line, and for such events there
always exist (infinitely many) synchronous events.

The given notion of simultaneity allows us to associate
each observer with a foliation of the CN. For each event
oi ∈ Oa there is a leaf Li(Oa), which is the set of events si-
multaneous to oi with respect to the observer Oa, namely

Li(Oa) := {b ∈ N : a ∼O oi}. (3)

The collection of all leaves for all the events in Oa is the
foliation L(Oa) of N associated to the observer Oa

L(Oa) := {Li(Oa), ∀i ∈ Z}. (4)

{

o

i1 i2

21o{1 3OO

13

O2

= =0
1 o02 o03=ao

=2

=2

=11

2

=12

=4

=1

12

=323

13=12

!!!!!!!!!!! !!!

!!!!!!!!!!! !!!

=2

=1

=2!!!!!!!!!!! !!!

!!!!!!!!!! !!!

!!!!!!!!!! !!!

=4

3

!!!!!!!!!! !!!
1

2

3

12

23

GMD and 
A. Tosini 
1008.4805 

giovedì 30 dicembre 2010



 

`

Lorentz transformations  from causality 
and topological homogeneity

2

a ∈ Jb (or b ∈ Ja). We call a CN connected if for every
a, b ∈ N there exists c ∈ Ja ∩ Jb, corresponding to the
intuitive notion of connectedness. Two events that are

a

FIG. 1: Causal network: illustration of the set of past/future
light-cone of event a.

not space-like are connected by at least a causal chain,
e. g. a # b are connected by the causal chain C(a, b)
given by C(a, b) := {ci}Ni=1, with a ≡ c1 ≺ c2 ≺ . . . cN ≡
b. Being the equivalent of a world-line, the causal chain
plays also the role of an observer. It is convenient to
orient the chain, generalizing its definition to include the
case b # a, writing C(a, b) for C(a, b) := {ci}Ni=1, with
b ≡ c1 ≺ c2 ≺ . . . cN ≡ a. The verse of the chain is
taken into account by a signed cardinality |C(a, b)|± :=
σ|C(a, b)| with σ = + for a ≺ b, and σ = − for b ≺ a.
In order to derive SR from the CN, we need the equiv-

alent of the Galileo principle [11], namely the invariance
of the physical law with the reference system. Within
a single frame the Galileo principle is just uniformity of
space and time. In the present purely topological con-
text, this translates to the topological homogeneity of the
CN, the physical law being the causal connection-rule of
the network, i. e. the tile of the causal pattern. At this
point, we need to make more specific the notion of CN,
introducing different types of links, e. g. in Fig. 2 we
have two generally different kinds of input links—the left
and the right ones—for each node. It is now convenient
to label links with letters. We then consider the input
and the output sets lin(a) = {i1(a), i2(a), . . . iK(a)} and
lout(a) = {o1(a), o2(a), . . . oH(a)} of links of an event.
We now say that a CN is topologically homogeneous if for
each couple of events a, b ∈ N one has the isomorphism
ij(a) = ij(b) and oj(a) = oj(b) for j = 1, . . .H = K. An
example of homogeneous CN is given in Fig. 2. There is
no loss of generality in considering only homogeneous CN
with H = K and with all events isomorphic: in fact, one
can always reach this situation, by grouping connected
events into single ones, i. e. by event coarse-graining.
In a homogeneous causal network we can also easily see

how causality is sufficient to guarantee a maximum speed
of “information flow”. Such speed is just “one-event per
step”, corresponding to a line at 45o in Fig. 2 (to con-
nect events along a line making an angle < 45o with the
horizontal, one needs to follow some causal connections
in the backward direction from the output to the input).

FIG. 2: Right: homogeneous causal network. Left: equivalent
representation as a quantum circuit. .

We will now introduce the notion of simultaneity in
relation to an observer. The observer is just a causal
chain (conveniently taken as unbounded). We label the
events of the chain with relative numbers, choosing an
event for the zero. Hence, an observer will be denoted as
Oa = {oi}i∈Z, with oi # oi+1 ∀i ∈ Z, and with a = o0
representing the origin. The index i ∈ Z plays the role
of the observer’s proper time. Thanks to the topological
homogeneity, we can translate the observer Oa to any
event a′ ∈ N. We will denote by O the equivalence class
of all observers translated over all events of the CN. We
will also denote by Oa(b, c) the causal chain C(b, c) ⊂ Oa.
We now define simultaneity of events a and b—denoted
as a ∼O b—as follows

a ∼O b ⇐ inf
b∗∈J

+

b

|Oa(a, b
∗)|± = inf

a∗∈J
+
a

|Ob(b, a
∗)|±. (2)

Depending on the shape of the observer chain, one may
have situations in which there are no synchronous events.
However, it is easy to see that for an observer that is topo-
logically homogeneous (i. e. periodic) there always exist
infinitely many simultaneous events. Moreover, modulo
event coarse-graining, without loss of generality we can
restrict only to observers with a zig-zag with a single pe-
riod, with α ≥ 1 steps to the right and β ≥ 1 steps to
the left (we will call them simply periodic). Each ziz-zag
is the equivalent of a tic-tac of an Einstein clock made
with light bouncing between two mirrors. All events on
the same mirror lay on a line, and for such events there
always exist (infinitely many) synchronous events.
The given notion of simultaneity allows us to associate

each observer with a foliation of the CN. For each event
oi ∈ Oa there is a leaf Li(Oa), which is the set of events si-
multaneous to oi with respect to the observer Oa, namely

Li(Oa) := {b ∈ N : a ∼O oi}. (3)

The collection of all leaves for all the events in Oa is the
foliation L(Oa) of N associated to the observer Oa

L(Oa) := {Li(Oa), ∀i ∈ Z}. (4)
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The foliation has an “origin” a defined by the observer
Oa. Homogeneity of foliations follows from that of the ob-
server. Notice that a foliation does not generally contain
all the events of the CN (it certainly does for α = β = 1):
this fact is related to the sparsness issue raised in Ref.
[12] for Lorentz-transformed regular lattices of points.

For a given foliation L(Oa) we can now define a pair of
coordinates z(b) for any event b ∈ L(Oa) via the map

KOa
: N → Z

2, b #→ KOa
(b) := z(b) =

[

z1(b)
z2(b)

]

,

z1(b) := inf
b∗∈J

+

b

|Oa(a, b
∗)|±, z2(b) := inf

a∗∈J
+
a

|Ob(b, a
∗)|±.

(5)

Thus, to each observer Oa it corresponds a coordinate

z =4 z =221

a

b

a*b*

FIG. 3: Illustration of the coordinate map in Eq. (5) (the
observer has α = 3 and β = 2).

map, and this is what is commonly called a reference
frame—shortly frame. The coordinates z1 and z2 do not
have an immediate meaning, but get an simple interpre-
tation thanks to the following Lemma.

Lemma 1 An event b ∈ L(Oa) belongs to the t-th leaf
Lt(Oa) for t = (z1 − z2)/2, and the number of events on
such leaf between b and Oa is given by s = (z1 + z2)/2.

Proof. There exists t ∈ Z such that ot is simultaneous
to b. By definition one has b ∈ Lt(Oa), and

inf
b∗∈J

+

b

|Oot(ot, b
∗)|± = inf

ot∗∈{jfot
|Ob(b, ot

∗)|±. (6)

One has

z1(b) = t+ inf
b∗∈J

+

b

|Oot(ot, b
∗)|±, (7)

whereas

z2(b) = inf
o∗
t
∈J

+
ot

inf
a∗∈J

+
a

(

|Ob(b, o
∗
t )|± + |Ob(o

∗
t , a

∗)|±
)

. (8)

Topological homogeneity implies that

z2(b) = inf
ot∗∈J

+
ot

|Ob(b, o
∗
t )|± − t. (9)

Using the simultaneity condition in Eq. (6) we can com-
bine Eqs. (7) and (9) to get t = 1

2
(z1 − z2).!

According to the last Lemma the coordinates
[

t(b)
s(b)

]

:= 2
1
2U(π/4)

[

z(b)
z(b)

]

, (10)

where U(θ) is the matrix performing a θ-rotation, can be
interpreted as the space-time coordinates of the event b
in the frame L(Oa).

Frames in standard configuration (boosted). Consider
now two observers O1

a = {o1i } and O2
a = {o2j} sharing

the same origin (homogeneity guarantees the existence
of observers sharing the origin). We will shortly denote
the two frames as R1 and R2, and the corresponding co-
ordinate maps as K1 and K2. We will say that the two
frames R1 and R2 are in standard configuration if there
exist positive α12,β12, such that ∀i ∈ Z

K1(o2i ) = D
12K2(o2i ), D

12 := diag(α12,β12). (11)

It turns out that having chosen only simply periodic ob-
servers, one has αij = αj/αi ∈ Z+, βij = βj/βi ∈ Z+.

Examples of observers corresponding to frames in stan-
dard configuration are shown in Fig. 4. Clearly different
frames correspond to generally different sets of events,
and what follows applies to the events in their intersec-
tion: thus, again, the transformation includes an implicit
event coarse-graining. We now see how it is possible to

1 3
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FIG. 4: Example of three observers related as in Eq. (11) and
then generating reference frames in standard configuration.

define a relative velocity between two frames in standard
configuration. It is readily seen that K2(o2n) = (n,−n),
whence K1(o2l ) = (lα12,−lβ12). We can now define the
relative velocity between R1 and R2 as the quotient be-
tween the space and time coordinates of the observer O2

with respect to observer O1, namely, by Lemma 1

v12 =
nα12 − nβ12

nα12 + nβ12
=

α12 − β12

α12 + β12
. (12)

Of course one has K2(o2i ) = D21K1(o2i ) ∀i ∈ Z, with

D21 = D12−1
= diag(1/α12, 1/β12), whence upon rewrit-

ing Eq. (12) for v21 one obtains v21 = −v12.
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The foliation has an “origin” a defined by the observer
Oa. Homogeneity of foliations follows from that of the ob-
server. Notice that a foliation does not generally contain
all the events of the CN (it certainly does for α = β = 1):
this fact is related to the sparsness issue raised in Ref.
[12] for Lorentz-transformed regular lattices of points.

For a given foliation L(Oa) we can now define a pair of
coordinates z(b) for any event b ∈ L(Oa) via the map

KOa : N → Z2, b #→ KOa(b) := z(b) =
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z1(b)
z2(b)

]
,

z1(b) := inf
b∗∈J+b

|Oa(a, b∗)|±, z2(b) := inf
a∗∈J+a

|Ob(b, a
∗)|±.

(5)

Thus, to each observer Oa it corresponds a coordinate

z =4 z =221
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FIG. 3: Illustration of the coordinate map in Eq. (5) (the
observer has α = 3 and β = 2).

map, and this is what is commonly called a reference
frame—shortly frame. The coordinates z1 and z2 do not
have an immediate meaning, but get an simple interpre-
tation thanks to the following Lemma.

Lemma 1 An event b ∈ L(Oa) belongs to the t-th leaf
Lt(Oa) for t = (z1 − z2)/2, and the number of events on
such leaf between b and Oa is given by s = (z1 + z2)/2.

Proof. There exists t ∈ Z such that ot is simultaneous
to b. By definition one has b ∈ Lt(Oa), and

inf
b∗∈J+b

|Oot(ot, b
∗)|± = inf

ot
∗∈{jfot

|Ob(b, ot
∗)|±. (6)

One has

z1(b) = t + inf
b∗∈J+b

|Oot(ot, b
∗)|±, (7)

whereas

z2(b) = inf
o∗

t∈J+ot

inf
a∗∈J+a

(
|Ob(b, o

∗
t )|± + |Ob(o

∗
t , a

∗)|±
)
. (8)

Topological homogeneity implies that

z2(b) = inf
ot

∗∈J+ot

|Ob(b, o
∗
t )|± − t. (9)

Using the simultaneity condition in Eq. (6) we can com-
bine Eqs. (7) and (9) to get t = 1

2 (z1 − z2). !
According to the last Lemma the coordinates
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where U(θ) is the matrix performing a θ-rotation, can be
interpreted as the space-time coordinates of the event b
in the frame L(Oa).

Frames in standard configuration (boosted). Consider
now two observers O1

a = {o1
i } and O2

a = {o2
j} sharing

the same origin (homogeneity guarantees the existence
of observers sharing the origin). We will shortly denote
the two frames as R1 and R2, and the corresponding co-
ordinate maps as K1 and K2. We will say that the two
frames R1 and R2 are in standard configuration if there
exist positive α12, β12, such that ∀i ∈ Z

K1(o2
i ) = D12K2(o2

i ), D12 := diag(α12, β12). (11)

It turns out that having chosen only simply periodic ob-
servers, one has αij = αj/αi ∈ Z+, βij = βj/βi ∈ Z+.

Examples of observers corresponding to frames in stan-
dard configuration are shown in Fig. 4. Clearly different
frames correspond to generally different sets of events,
and what follows applies to the events in their intersec-
tion: thus, again, the transformation includes an implicit
event coarse-graining. We now see how it is possible to
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FIG. 4: Example of three observers related as in Eq. (11) and
then generating reference frames in standard configuration.

define a relative velocity between two frames in standard
configuration. It is readily seen that K2(o2

n) = (n,−n),
whence K1(o2

l ) = (lα12,−lβ12). We can now define the
relative velocity between R1 and R2 as the quotient be-
tween the space and time coordinates of the observer O2

with respect to observer O1, namely, by Lemma 1

v12 =
nα12 − nβ12

nα12 + nβ12
=

α12 − β12

α12 + β12
. (12)

Of course one has K2(o2
i ) = D21K1(o2

i ) ∀i ∈ Z, with

D21 = D12−1
= diag(1/α12, 1/β12), whence upon rewrit-

ing Eq. (12) for v21 one obtains v21 = −v12.
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The foliation has an “origin” a defined by the observer
Oa. Homogeneity of foliations follows from that of the ob-
server. Notice that a foliation does not generally contain
all the events of the CN (it certainly does for α = β = 1):
this fact is related to the sparsness issue raised in Ref.
[12] for Lorentz-transformed regular lattices of points.

For a given foliation L(Oa) we can now define a pair of
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,
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(5)

Thus, to each observer Oa it corresponds a coordinate
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FIG. 3: Illustration of the coordinate map in Eq. (5) (the
observer has α = 3 and β = 2).

map, and this is what is commonly called a reference
frame—shortly frame. The coordinates z1 and z2 do not
have an immediate meaning, but get an simple interpre-
tation thanks to the following Lemma.

Lemma 1 An event b ∈ L(Oa) belongs to the t-th leaf
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It turns out that having chosen only simply periodic ob-
servers, one has αij = αj/αi ∈ Z+, βij = βj/βi ∈ Z+.

Examples of observers corresponding to frames in stan-
dard configuration are shown in Fig. 4. Clearly different
frames correspond to generally different sets of events,
and what follows applies to the events in their intersec-
tion: thus, again, the transformation includes an implicit
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define a relative velocity between two frames in standard
configuration. It is readily seen that K2(o2

n) = (n,−n),
whence K1(o2

l ) = (lα12,−lβ12). We can now define the
relative velocity between R1 and R2 as the quotient be-
tween the space and time coordinates of the observer O2

with respect to observer O1, namely, by Lemma 1
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i ) ∀i ∈ Z, with
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= diag(1/α12, 1/β12), whence upon rewrit-
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The foliation has an “origin” a defined by the observer
Oa. Homogeneity of foliations follows from that of the ob-
server. Notice that a foliation does not generally contain
all the events of the CN (it certainly does for α = β = 1):
this fact is related to the sparsness issue raised in Ref.
[12] for Lorentz-transformed regular lattices of points.

For a given foliation L(Oa) we can now define a pair of
coordinates z(b) for any event b ∈ L(Oa) via the map
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observer has α = 3 and β = 2).

map, and this is what is commonly called a reference
frame—shortly frame. The coordinates z1 and z2 do not
have an immediate meaning, but get an simple interpre-
tation thanks to the following Lemma.

Lemma 1 An event b ∈ L(Oa) belongs to the t-th leaf
Lt(Oa) for t = (z1 − z2)/2, and the number of events on
such leaf between b and Oa is given by s = (z1 + z2)/2.
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Using the simultaneity condition in Eq. (6) we can com-
bine Eqs. (7) and (9) to get t = 1

2 (z1 − z2). !
According to the last Lemma the coordinates

[
t(b)
s(b)

]
:= 2

1
2 U(π/4)

[
z(b)
z(b)

]
, (10)

where U(θ) is the matrix performing a θ-rotation, can be
interpreted as the space-time coordinates of the event b
in the frame L(Oa).

Frames in standard configuration (boosted). Consider
now two observers O1

a = {o1
i } and O2

a = {o2
j} sharing

the same origin (homogeneity guarantees the existence
of observers sharing the origin). We will shortly denote
the two frames as R1 and R2, and the corresponding co-
ordinate maps as K1 and K2. We will say that the two
frames R1 and R2 are in standard configuration if there
exist positive α12, β12, such that ∀i ∈ Z

K1(o2
i ) = D12K2(o2

i ), D12 := diag(α12, β12). (11)

It turns out that having chosen only simply periodic ob-
servers, one has αij = αj/αi ∈ Z+, βij = βj/βi ∈ Z+.

Examples of observers corresponding to frames in stan-
dard configuration are shown in Fig. 4. Clearly different
frames correspond to generally different sets of events,
and what follows applies to the events in their intersec-
tion: thus, again, the transformation includes an implicit
event coarse-graining. We now see how it is possible to
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define a relative velocity between two frames in standard
configuration. It is readily seen that K2(o2

n) = (n,−n),
whence K1(o2

l ) = (lα12,−lβ12). We can now define the
relative velocity between R1 and R2 as the quotient be-
tween the space and time coordinates of the observer O2

with respect to observer O1, namely, by Lemma 1

v12 =
nα12 − nβ12

nα12 + nβ12
=

α12 − β12

α12 + β12
. (12)

Of course one has K2(o2
i ) = D21K1(o2

i ) ∀i ∈ Z, with

D21 = D12−1
= diag(1/α12, 1/β12), whence upon rewrit-

ing Eq. (12) for v21 one obtains v21 = −v12.

v12 =
α12 − β12

α12 + β12
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v13 =
α12α23 − β12β23

α12α23 + β12β23
=

v12 + v23

1 + v12v23

t1 = χ12
t2 + v12s2

�
1− (v12)2

, s1 = χ12
s2 + v12t2�
1− (v12)2

,

χ12 :=
�

α12β12

4

Velocity-composition rule. Consider three frames R1,
R2, R3 in pairwise standard relation, associated to ob-
servers O1, O2, O3 sharing the origin a, corresponding
to the coordinate maps K1, K2, K3 (see for example the
situation illustrated in Fig. 4). Let D12 = diag(α12, β12)
and D23 = diag(α23, β23) be the matrixes relating re-
spectively the coordinates of the second observer with
respect to the first one and the coordinates of the third
observer with respect to the second one, according to

K1(o1
i ) = D12K2(o2

i ), K2(o3
j ) = D23K3(o3

j). (13)

We are interested in the relation between the coordinates
of frame R3 with respect to frame R1. This is given by

K1(o3
j ) = D13K3(o3

j ), (14)

with matrix D13 = D12D23 = diag(α12α23, β12β23).
From Eq. (12) it immediately follows that

v13 =
α12α23 − β12β23

α12α23 + β12β23
, (15)

which by simple algebraic manipulations gives

v13 =

(
α12−β12

α12+β12

)
+

(
α23−β23

α23+β23

)

1 +
(

α12−β12

α12+β12

)(
α23−β23

α23+β23

) =
v12 + v23

1 + v12v23
, (16)

namely the velocity composition rule of special relativity.

Lorentz transformations. Again using Lemma 1 we
can derive the space-time coordinate transformations be-
tween the two frames R1 and R2 in standard relation. Us-
ing the topological homogeneity of N it follows that Eq.
(11) holds for any event b ∈ R1∩R2. One has z1

1 = α12z2
1

and z1
2 = β12z2

2 , and after easy manipulations we get

z1
1 ± z1

2

2
=

α12 + β12

2

[
z2
1 ± z2

2

2
+

(
α12 − β12

α12 + β12

)
z2
1 ∓ z2

2

2

]
,

(17)

where we can easily identify the space-time coordinates
of the event in the two frames and their relative velocity,
in terms of which Eqs. (17) become

t1 = 1
2 (α12 + β12)

(
t2 + v12s2

)
,

s1 = 1
2 (α12 + β12)

(
s2 + v12t2

)
.

(18)

Using the simple relation

1
2 (α12 + β12) =

χ12√
1 − (v12)2

, χ12 :=
√

α12β12, (19)

we obtain the identities

t1 = χ12
t2 + v12s2

√
1 − (v12)2

, s1 = χ12
s2 + v12t2√
1 − (v12)2

, (20)

which differ from the Lorentz transformations only by the
multiplicative factor χ12. The factor χ12 can be removed
by rescaling the coordinate map in Eq. (10) using the
factor (2αβ)

1
2 in place of 2

1
2 , with the constants α and β

of the observer. The relative velocity between two frames
R1 and R2 does not change in this representation because
the common factor simplifies in Eq. (12). Consequently
also the velocity-composition rule is left unchanged. A

multiplicative factor
√

α1β1

α2β2 = χ−1
12 now shows up after

the factor 1/2 in both transformations (18), and, using
relation (19) we get the usual Lorentz transformations.

We emphasize that the whole procedure for defin-
ing the space-time coordinates is made only with event-
counting on the CN. For each transformation a corre-
sponding coarse-graining (of the starting or the ending
foliation) seems essential (corresponding to the usual
rescaling in the Minkowski space, due to reciprocity be-
tween the observers). Finally, it is clear that our deriva-
tion could be extended to d > 1 space dimensions, for
CN that are embeddable in d+1 dimensions, with leaves
that can be embedded in d dimensions, e. g. for a d + 1-
dimensional diamond lattice.
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SIMULATING   QFT
Simple scalar fields in 1 space dimension

 Microcausality (equal time)

+ : Fermi 

generally nonlocal operators. In QFT they satisfy (anti)commutation relations

ψ(0)� �� �
� �� �

ψ(t)

Ut� �� �
(1)

Uε = I− εH (2)

[H(k)
i

,H(k)
j

] = 0, [H(l),H(k)] �= 0 (3)

H = ∑
�i, j�

Hi, j (4)

φ(x) φn := φ(na) a

THE DIRAC QUANTUM SIMULATOR

ψ(n) = γ(n) :=

�
l−1�

j=−∞
σ z

j

�
σ−

l
(5)

{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (6)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

�
−ψ(l), l = n

ψ(l), l �= n
. (7)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (8)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows
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v1(n)
v2(n)
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σ z
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, (9)

where we used the notation σα
n

= . . . I⊗ I⊗ σα
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n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (10), namely
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       : field, operator function of space (evolving in time); we will 
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{ψ(x),ψ†(x)} = δ (x− y), {ψ(x),ψ(y)} = 0 (6)

From the identity σzσ−σz =−σ−, one has

σz(n)ψ(l)σz(n) =

�
−ψ(l), l = n

ψ(l), l �= n
. (7)

The Dirac Quantum Field Simulator. In the second quantization the Dirac field be-
comes an operator obeying the following equal-time anticommutation relations

{ψα(x),ψ†
β (y)} = δαβ δ (x− y), {ψα(x),ψβ (y)} = 0. (8)

In the computational representation, the field operator can be written in terms of local
single-qubit operators using the Clifford algebra as follows

ψ(n) =





u1(n)
u2(n)
v1(n)
v2(n)



 , ψα(n) = γ4n+α , γk :=

�
k−1

∏
j=−∞

σ z

j

�
σ−

k
, (9)

where we used the notation σα
n

= . . . I⊗ I⊗ σα
����
n−th

I⊗ I⊗ . . .. We want now to reproduce

the infinitesimal unitary evolution of the field given by Eq. (10), namely

ψ(n, t + τ) =
�

I− iε
�

i

2σx(δ+−δ−) a

λ I

a

λ I − i

2σx(δ+−δ−)

��
ψ(n, t). (10)

  : topon space-granularity (minimal in principle discrimination 
between independent events);

τ
����    chronon time-granularity;τ

[φ†n,φm]± = δnm

 - : Bose (Newton-Wigner)

vc :=
a

τ

CAUSAL SPEED

2a� �� �
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Quantum-computational  
simulation of  QFT

PROBLEM with QFT: “violation” of Einstein causality

Simulation of QFT with a quantum computer, with gates 
performing infinitesimal transformations:

the simulation gives back exactly QFT in the limit               
and for infinite circuit, but ...

τ, a→ 0

Einstein causality only in average!

Lorentz-covariance is not a consequence 
of QM (causality)!

vc =∞!
Galileo!

giovedì 30 dicembre 2010



THE NEW QCFT

a a

t=0

a
n+1 n+1nn 1 nn 1 + ++

aa

swap swap

swapswap

swap

swap

swap

swap

swap

swap

Finite gate-transformations (not infinitesimal!)
The causal speed     is finite!vc

Lorentz’s transformations 
emerge from the causal 
network

Different QFT

observational consequences!
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Simple scalar fields in 1 space dimension
THE NEW QCFT

�∂tz = 1
2kτ [z(kτ)− z(−kτ)]

�∂x = 1
2ka (δk

+ − δk
−)

Coarse-grained discrete derivatives:

aa aa

t=0

z
a

f

bU

U

H
(2n)
gatez =

i

2nτ
[z(nτ)− z(−nτ)] = i�∂tz

H
(2)
gatez =

i
2τ (UfzU†

f − U†
b zUb)

“HAMILTONIAN”
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THE NEW QCFT
MASSLESS KLEIN GORDON FIELD

a a

t=0

a
n+1 n+1nn 1 nn 1 + ++

aa

swap swap

swapswap

swap

swap

swap

swap

swap

swap

φ+
n (±2τ) = φ+

n±1(0), φ−n (±2τ) = φ−n∓1(0)

H
(4)
gateφn = iσzvc

�∂xφn

�� = �∂2
x −

1
v2

c

�∂2
t

��φn = 0

NEW QFT: finite gate-transformations (not infinitesimal!)

H
(4)
gateφ

α
n = iαvc

�∂xφα
n, α = ±
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THE NEW QCFT
 KLEIN GORDON WITH MASS

What is 
inertial mass?Zitterbewegung
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THE NEW QCFT
 KLEIN GORDON WITH MASS

We need to develop a path-sum calculus over the circuit:

zl(t) =
�

ikl

U (1)
i1i2

U (2)
i2i3

. . . U (n)
inin+1

zk(0)

22

(3)

(1)

21

U
(4)

21

U

U

12

U
(2)

20123 1z z z z z z

1. Number all the input wires at each gate, 
from the leftmost to the rightmost one, and 
do the same for the output wires

2. We say that a wire l is in the past-cone of 
the wire k if there is a path from l to k 
passing through gates.

3. For any output wire k and any input wire 
l in its causal past cone, consider all paths 
connecting k with l

4. The following linear expansion holds

ikl = (i1i2 . . . inin+1) with i1 = k, in+1 = l,
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THE NEW QCFT
 KLEIN GORDON WITH MASS

“Hamiltonian”

H
(4)
gate =

i
4τ

�
A21B21δ− −B†

12A
†
12δ+ + A22B11 −B†

11A
†
22 (A21B22 −B†

11A
†
21)δ− + A22B12 −B†

12A
†
11

(A12B11 −B†
22A

†
12)δ+ + A11B21 −B†

21A
†
22 A12B12δ+ −B†

21A
†
21δ− + A11B22 −B†

22A
†
11

�

+
+1+10011

+ +

a

t=1

t=0

t=2

B B

A

B

A
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THE NEW QCFT
 KLEIN GORDON WITH MASS

“Hamiltonian”

H
(4)
gate =

i
4τ

�
A21B21δ− −B†

12A
†
12δ+ + A22B11 −B†

11A
†
22 (A21B22 −B†

11A
†
21)δ− + A22B12 −B†

12A
†
11

(A12B11 −B†
22A

†
12)δ+ + A11B21 −B†

21A
†
22 A12B12δ+ −B†

21A
†
21δ− + A11B22 −B†

22A
†
11

�

of the field, one has
[

φ+

φ−

]

t=2
=

[
A21B21δ− +A22B11 A21B22δ− +A22B12
A11B21 +A12B11δ+ A11B22 +A12B12δ+

][
φ+

φ−

]
, (13)

[
φ+

φ−

]

t=−2
=

[
B†

12A†
12δ+ +B†

11A†
22 B†

11A†
21δ− +B†

12A†
11

B†
21A†

22 +B†
22A†

12δ+ B†
22A†

11 +B†
21A†

21δ−

][
φ+

φ−

]
(14)

τ

+
+1+100−1−1

+ − +

a

−

t=1

t=0

t=2

−φ

B

φφ φ φ

B

A

φ

B

A

FIGURE 5. Quantum circuit for a Klein-Gordon field

where δ± denotes the field shift operators δ±φ n := φ n±1. According to our definition of
Hamiltonian in Eq. (5), we have

H(4)
gate = i

4τ

[
A21B21δ−−B†

12A†
12δ+ + A22B11 −B†

11A†
22 (A21B22 −B†

11A†
21)δ− + A22B12 −B†

12A†
11

(A12B11 −B†
22A†

12)δ+ + A11B21 −B†
21A†

22 A12B12δ+−B†
21A†

21δ− + A11B22 −B†
22A†

11

]
.

(15)
One can check that the Hamiltonian is Hermitian, since the following implications are

always satisfied

〈φ±
n |H(4)

gate|φ±
n 〉 = 〈φ±

n |H(4)
gate|φ±

n 〉∗ =⇒ i(AaaBbb −A†
aaB†

bb) ∈ R,

〈φ±
n |H(4)

gate|φ∓
n 〉 = 〈φ∓

n |H(4)
gate|φ±

n 〉∗ =⇒ (A22B12 −A†
11B†

12) = −(A11B21 −A†
22B†

21)
∗,

〈φ±
n+1|H

(4)
gate|φ±

n 〉 = 〈φ±
n |H(4)

gate|φ±
n+1〉

∗ =⇒ A†
abB†

ab = A∗
baB∗

ba,

〈φ+
n |H(4)

gate|φ−
n−1〉 = 〈φ−

n |H(4)
gate|φ+

n+1〉
∗ =⇒ A21B22 −A†

21B†
11 = −(A12B11 −A†

12B†
22)

∗.
(16)

Using the field smoothness condition 1
2(δ+ +δ−) & 1, along with the the identity

δ± = 1±2a∂̂x, (17)

which follows from the definition of the coarse-grained discrete space-derivative ∂̂x =
1
4a(δ+−δ−) (a distance between centers of n.n. gates: see Fig. 5), the Hamiltonian H(4)

gate
can be rewritten in the Dirac fashion

H(4)
gate = vc(H+K∂̂x), H :=

[
H11 H12
H∗

12 H22

]
, K :=

[
K11 K12
−K∗

12 K22

]
, (18)

Hermiticity is satisfied:
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 KLEIN GORDON WITH MASS ( SPINLESS  DIRAC)

Write the “Hamiltonian” as follows:

3

centers of n.n. gates: see Fig. 3). The Hamiltonian H(4)
gate

has the Dirac form @@@ if

H(4)
gate = c(H + iK∂̂x), (13)

where

H :=
[
H11 H12

H∗
12 H22

]
, K :=

[
K11 K12

−K∗
12 K22

]
, (14)

and vc = a
τ is the causal speed (the maximum allowed

propagation speed according to causality), and

H11 = − 1
2a"(A21B21 + A22B11) = 0,

H12 = i
4a (A21B22 − A∗

12B
∗
11 + A22B12 − A∗

11B
∗
21) = λ−1,

H22 = − 1
2a"(A12B12 + A11B22) = 0,

K11 = −#(A21B21) = ζ,

K22 =#(A12B12) = −ζ,

K12 = − 1
2 (A21B22 − A∗

12B
∗
11) = 0.

(15)

namely

A21B22 = A∗
12B

∗
11,

A21B21 + A22B11, A12B12 + A11B22 ∈ R,

#(A21B21) = #(A12B12) = −ζ,

A22B12 − A∗
11B

∗
21 = −4iaλ−1.

(16)

Unitarity of A and B means

|A11|2 + |A12|2 = |A21|2 + |A22|2 = 1,

A11A
∗
21 + A12A

∗
22 = A21A

∗
11 + A22A

∗
12 = 0,

(17)

and similarly for B. Without loss of generality, we can
take the determinants |A| = |B| = 1, corresponding to
A11 = A∗

22, A12 = −A∗
21, and similarly for B. The first

of identities (16) then gives B11 = B22 = 0, whence

B11 = B22 = 0, A12B12 = A21B21 = −ζ,

A22B12 = −A∗
11B

∗
21 = −2iaλ−1.

(18)

Upon parametrizing A and B as follows

A =
[

eiφ cos θ eiψ sin θ
−e−iψ sin θ e−iφ cos θ

]
, B =

[
0 eiξ

−e−iξ 0

]
, (19)

one obtains

ei(ψ+ξ) = −1, ei(φ−ξ) = i, (20)

and

sin θ = ζ =

√

1 −
(

2a

λ

)2

. (21)

Eq. (21) corresponds to a mass-dependent vacuum re-
fraction index ζ−1 which is strictly greater than 1, apart
from the special case of zero inertial mass λ−1 = 0, is

monotonlically increasing versus the mass and becomes
infinite (no propagation of information) for λ → 2a.

The existence of a mass-dependent vacuum refraction
index is a general feature of the quantum-computational
simulation of the field due to the no-superluminal con-
straint. It is simply a consequence of linearity and uni-
tarity, and does not depend on details of the quantum
circuit. To find a bound for ζ−1 which holds for any spe-
cific circuit, consider that in order to obtain Eq. @@@
we require the following overall backward and forward
unitary interactions

Ufφ+
n Uf − U†

b φ+
n Ub = ζ(φ+

n+1 − φ+
n−1) − 4i

a

λ
φ−

n , (22)

and, for local gates involving only next neighbor wires,
the unitary evolutions must be of the form

Ufφ+
n U†

f =ηφ+
n + ζφ+

n+1 + γφ−
n ,

U†
b φ+

n Ub =ηφ+
n + ζφ+

n−1 + γ′φ−
n ,

(23)

with ζ > 0 and γ − γ′ = −4i a
λ . But normalization of the

row of the unitary matrix corresponds to

|γ|, |γ′| ≤
√

1 − ζ2 =⇒ 2a

λ
≤

√
1 − ζ2, (24)

which is the bound for the vacuum refraction index

ζ−1 ≥
[
1 −

(
2a

λ

)2
]− 1

2

. (25)

FIG. 4: .....
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FIG. 5: The inverse ζ of the mass-dependent vacuum refrac-
tion index as a function of inverse Rule for numbering wires
to evaluate the contribution of each gate to the forward evo-
lution of

a =
√

G!
c3

, λ =
!

mc
(26)

2a

λ
= 2m

√
G

c! (27)

φ−
n =σ−

2n

n−1∏

k=−∞
σz

2k+1σ
z
2k,

φ+
n =σ−

2n+1

n−1∏

k=−∞
σz

2k+1σ
z
2k.

(28)

(inverse) refraction index

+
+1+10011

+ +

a

t=1

t=0

t=2

B B

A

B

A

H
(4)
gate = c(H + iK�∂x) = icζ �∂x + ωσx, ω = cλ−1

THE NEW QCFT
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Write the “Hamiltonian” as follows:

3

centers of n.n. gates: see Fig. 3). The Hamiltonian H(4)
gate

has the Dirac form @@@ if

H(4)
gate = c(H + iK∂̂x), (13)

where

H :=
[
H11 H12

H∗
12 H22

]
, K :=

[
K11 K12

−K∗
12 K22

]
, (14)

and vc = a
τ is the causal speed (the maximum allowed

propagation speed according to causality), and

H11 = − 1
2a"(A21B21 + A22B11) = 0,

H12 = i
4a (A21B22 − A∗

12B
∗
11 + A22B12 − A∗

11B
∗
21) = λ−1,

H22 = − 1
2a"(A12B12 + A11B22) = 0,

K11 = −#(A21B21) = ζ,

K22 =#(A12B12) = −ζ,

K12 = − 1
2 (A21B22 − A∗

12B
∗
11) = 0.

(15)

namely

A21B22 = A∗
12B

∗
11,

A21B21 + A22B11, A12B12 + A11B22 ∈ R,

#(A21B21) = #(A12B12) = −ζ,

A22B12 − A∗
11B

∗
21 = −4iaλ−1.

(16)

Unitarity of A and B means

|A11|2 + |A12|2 = |A21|2 + |A22|2 = 1,

A11A
∗
21 + A12A

∗
22 = A21A

∗
11 + A22A

∗
12 = 0,

(17)

and similarly for B. Without loss of generality, we can
take the determinants |A| = |B| = 1, corresponding to
A11 = A∗

22, A12 = −A∗
21, and similarly for B. The first

of identities (16) then gives B11 = B22 = 0, whence

B11 = B22 = 0, A12B12 = A21B21 = −ζ,

A22B12 = −A∗
11B

∗
21 = −2iaλ−1.

(18)

Upon parametrizing A and B as follows

A =
[

eiφ cos θ eiψ sin θ
−e−iψ sin θ e−iφ cos θ

]
, B =

[
0 eiξ

−e−iξ 0

]
, (19)

one obtains

ei(ψ+ξ) = −1, ei(φ−ξ) = i, (20)

and

sin θ = ζ =

√

1 −
(

2a

λ

)2

. (21)

Eq. (21) corresponds to a mass-dependent vacuum re-
fraction index ζ−1 which is strictly greater than 1, apart
from the special case of zero inertial mass λ−1 = 0, is

monotonlically increasing versus the mass and becomes
infinite (no propagation of information) for λ → 2a.

The existence of a mass-dependent vacuum refraction
index is a general feature of the quantum-computational
simulation of the field due to the no-superluminal con-
straint. It is simply a consequence of linearity and uni-
tarity, and does not depend on details of the quantum
circuit. To find a bound for ζ−1 which holds for any spe-
cific circuit, consider that in order to obtain Eq. @@@
we require the following overall backward and forward
unitary interactions

Ufφ+
n Uf − U†

b φ+
n Ub = ζ(φ+

n+1 − φ+
n−1) − 4i

a

λ
φ−

n , (22)

and, for local gates involving only next neighbor wires,
the unitary evolutions must be of the form

Ufφ+
n U†

f =ηφ+
n + ζφ+

n+1 + γφ−
n ,

U†
b φ+

n Ub =ηφ+
n + ζφ+

n−1 + γ′φ−
n ,

(23)

with ζ > 0 and γ − γ′ = −4i a
λ . But normalization of the

row of the unitary matrix corresponds to

|γ|, |γ′| ≤
√

1 − ζ2 =⇒ 2a

λ
≤

√
1 − ζ2, (24)

which is the bound for the vacuum refraction index

ζ−1 ≥
[
1 −

(
2a

λ

)2
]− 1

2

. (25)
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FIG. 5: The inverse ζ of the mass-dependent vacuum refrac-
tion index as a function of inverse Rule for numbering wires
to evaluate the contribution of each gate to the forward evo-
lution of

a =
√

G!
c3

, λ =
!

mc
(26)

2a

λ
= 2m

√
G

c! (27)

φ−
n =σ−

2n

n−1∏

k=−∞
σz

2k+1σ
z
2k,

φ+
n =σ−

2n+1

n−1∏

k=−∞
σz

2k+1σ
z
2k.

(28)

(inverse) refraction index

+
+1+10011

+ +

a

t=1

t=0

t=2

B B

A

B

A

A =
�

eiφ cos θ eiψ sin θ
−e−iψ sin θ e−iφ cos θ

�

B =
�

0 ieiφ

−ie−iφ 0

�

H
(4)
gate = c(H + iK�∂x) = icζ �∂x + ωσx, ω = cλ−1
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Write the “Hamiltonian” as follows:

3

centers of n.n. gates: see Fig. 3). The Hamiltonian H(4)
gate

has the Dirac form @@@ if

H(4)
gate = c(H + iK∂̂x), (13)

where

H :=
[
H11 H12

H∗
12 H22

]
, K :=

[
K11 K12

−K∗
12 K22

]
, (14)

and vc = a
τ is the causal speed (the maximum allowed

propagation speed according to causality), and

H11 = − 1
2a"(A21B21 + A22B11) = 0,

H12 = i
4a (A21B22 − A∗

12B
∗
11 + A22B12 − A∗

11B
∗
21) = λ−1,

H22 = − 1
2a"(A12B12 + A11B22) = 0,

K11 = −#(A21B21) = ζ,

K22 =#(A12B12) = −ζ,

K12 = − 1
2 (A21B22 − A∗

12B
∗
11) = 0.

(15)

namely

A21B22 = A∗
12B

∗
11,

A21B21 + A22B11, A12B12 + A11B22 ∈ R,

#(A21B21) = #(A12B12) = −ζ,

A22B12 − A∗
11B

∗
21 = −4iaλ−1.

(16)

Unitarity of A and B means

|A11|2 + |A12|2 = |A21|2 + |A22|2 = 1,

A11A
∗
21 + A12A

∗
22 = A21A

∗
11 + A22A

∗
12 = 0,

(17)

and similarly for B. Without loss of generality, we can
take the determinants |A| = |B| = 1, corresponding to
A11 = A∗

22, A12 = −A∗
21, and similarly for B. The first

of identities (16) then gives B11 = B22 = 0, whence

B11 = B22 = 0, A12B12 = A21B21 = −ζ,

A22B12 = −A∗
11B

∗
21 = −2iaλ−1.

(18)

Upon parametrizing A and B as follows

A =
[

eiφ cos θ eiψ sin θ
−e−iψ sin θ e−iφ cos θ

]
, B =

[
0 eiξ

−e−iξ 0

]
, (19)

one obtains

ei(ψ+ξ) = −1, ei(φ−ξ) = i, (20)

and

sin θ = ζ =

√

1 −
(

2a

λ

)2

. (21)

Eq. (21) corresponds to a mass-dependent vacuum re-
fraction index ζ−1 which is strictly greater than 1, apart
from the special case of zero inertial mass λ−1 = 0, is

monotonlically increasing versus the mass and becomes
infinite (no propagation of information) for λ → 2a.

The existence of a mass-dependent vacuum refraction
index is a general feature of the quantum-computational
simulation of the field due to the no-superluminal con-
straint. It is simply a consequence of linearity and uni-
tarity, and does not depend on details of the quantum
circuit. To find a bound for ζ−1 which holds for any spe-
cific circuit, consider that in order to obtain Eq. @@@
we require the following overall backward and forward
unitary interactions

Ufφ+
n Uf − U†

b φ+
n Ub = ζ(φ+

n+1 − φ+
n−1) − 4i

a

λ
φ−

n , (22)

and, for local gates involving only next neighbor wires,
the unitary evolutions must be of the form

Ufφ+
n U†

f =ηφ+
n + ζφ+

n+1 + γφ−
n ,

U†
b φ+

n Ub =ηφ+
n + ζφ+

n−1 + γ′φ−
n ,

(23)

with ζ > 0 and γ − γ′ = −4i a
λ . But normalization of the

row of the unitary matrix corresponds to

|γ|, |γ′| ≤
√

1 − ζ2 =⇒ 2a

λ
≤

√
1 − ζ2, (24)

which is the bound for the vacuum refraction index

ζ−1 ≥
[
1 −

(
2a

λ

)2
]− 1

2

. (25)
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tion index as a function of inverse Rule for numbering wires
to evaluate the contribution of each gate to the forward evo-
lution of

a =
√

G!
c3

, λ =
!
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2a
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FIRST  QUANTIZATION
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Single-”particle” Schrödinger equation in ppm representation:
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SIMULATING   QFT
GAUGE    INVARIANCE
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where λ := h̄

mc
= 3.86159∗10

−13
is the reduced Compton wavelength.

Gauge invariance
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THE DIRAC QUANTUM SIMULATOR
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No anticommuting fields in more 
than one space dimension!

Do we really need anticommuting fields?
Grassman variables?

Microcausality and parastatistics
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problem for foundations of QFT!
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