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* Probabilistic operational
theory: every test from the
trivial system to the trivial
system 1s associated to a
probability distribution of

outcomes.

D’Ariano in Philosophy of Quantum
Information and Entanglement, A. Bokulich
and G. Jaeger (CUP, Cambridge UK, 2010)

Chikibella, D’Ariano, and Perinotti,
Phys. Rev. A 81 062348 (2010)
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Causal probabilistic theories
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A theory is causal if for any two tests that are
input-output connected the marginal probability

of the input event is independent on the choice
of the output test.

G. M. D’Ariano in Philosophy of Quantum
Information and Entanglement, A. Bokulich
and G. Jaeger (CUP, Cambridge UK, 2010).
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THE PRINCIPLE OF THE QUANTUMNESS

| WHATISINFORMATION PROCESSING?

* * * K Il ke

* A computer processes the input information to produce the output one.

* Software provides the rules for processing information written in subroutines, each
one with its own input and output.

* The same information processing can be achieved by different subroutines, in the
sense that the same input-output relation is achieved by different codes.

We will represent a processing in form of a box with wires as follows:

= N

B|S |B

the left/right wires represent the kind of registers on which the input/output of the
processing are read/written, respectively (different letters denote generally different types
of register).
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THE PRINCIPLE OF THE QUANTUMNESS

* * * K Il

 WHATISINFORMATION PROCESSING?  ——

We can compose processings connecting input with outputs of the same type as

follows:
A

S1

A/

C

B

So | B

If we send the output to the input of a previously called processing we will not draw a
loop, but instead we will redraw the same box twice, whence a box precisely
represents a single call of the processing, and the whole circuit will

represent the entire run, not a flow diagram.
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THE PRINCIPLE OF THE QUANTUMNESS

| WHATISINFORMATION PROCESSING?

* % K * I
A subroutine can generally be divided into alternative subroutines

* ok ok Kk

For example, in evaluating the factorial we can consider the two alternatives---n=0 and n>0---
and use the subroutine “return 1” for n=0 or the subroutine “return n*f(n-1)" for
n>0. The subroutine for evaluating £ (n) is then the collection of the two alternative
subroutines---and the same can be said for their respective processings £(0) and f(n>0). We
will represent the set of alternative processings as a single box as follows

A A’

B | {S:} | B

where Sz for different i represent alternative processings. We will call the processing £ (n)
the coarse graining of the two processings £(0) and £ (n>0). We will name the set of
all possible constituents of a processing its refinement set, and call a processing with
trivial refinement set indivisible.
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THE PRINCIPLE OF THE QUANTUMNESS

| WHATISINFORMATION PROCESSING? |

* * * K Il

* ok ok Kk

The data-input and data-output are themselves information processings---the
initialization and readout, respectively. They will be represented as follows

A

— A
B

A} = (B,

(A} = =15

i e

Notice that also an initialization can be divisible, and this will correspond to a random choice
of different initializations.

An initialization followed by a processing can be itself regarded as a new
initialization
A B B

@ G o — CA,_
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THE PRINCIPLE OF THE QUANTUMNESS

——— " WHATISINFORMATION PROCESSING? |

* ok ok Kk

The domain of a'processing is the set of its possible initializations, its range the set
of its possible readouts.

An initialization is specific when its refinement set is not the whole set of initializations.

Two initializations A1 and A3 are discriminable when:

(A .A B # (Ao . " B)

and the discrimination is perfect when B always occurs for A1 and never
occurs for Ao
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THEPRINCIPLE OF THE QUANTUMNESS

POSTULATES

* Kk * K & I * Kk kK
Pl. Causality: The occurrence of a component processing cannot depend on the
choice of the processing of its output (i. e.information flows only from input to
output).

P2. Local Readability: Ve can discriminate two initializations of multiple registers
by readouts on single registers.

P3. Reversibility and Indivisibility of Computation: Every information
processing can be achieved with a reversible one by adding a register in an indivisible
initialization.

P4. Indivisibility of Processing Composition: The processing corresponding to
the input-output sequence of two indivisible processings is itself indivisible.

P5. Discriminability of Specific Initializations: For any specific initialization
there exists another initialization that can be perfectly discriminated from it.

Pé6. Lossless Compressibility: For any initialization there exists an encoding which is
perfectly decodeable on its refinement set, and the encoded initialization is not specific.

w

5
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THEPRINCIPLE OF THE QUANTUMNESS

POSTULATES

* % % % & I e ik

Pl. Causality: The occurrence of a component processing cannot depend on the
choice of the processing of its output (information flows only from input to output).

Pl seems so obvious that has been systematically overlooked in the literature
(e.g. Hardy), whereas in fact one can construct explicitly an information-
processing theory which violates Pl. It allows to “normalize” quantum states
by multiplication by a constant. Relaxing postulate Pl may provide a natural
framework for a theory of quantum gravity.
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THEPRINCIPLE OF THE QUANTUMNESS

| POSTULATES [

* ok ok Kk

P2. Local Readability: Ve can discriminate two initializations of multiple registers
by readouts on single registers.

P2 (Local Discriminability) is the origin of the complex tensor product in QT,
(e.g.a QT over real Hilbert spaces would not satisfy it.)

It plays a crucial role in reducing experimental complexity in physics, by guaranteeing that
only local (although jointly executed) measurements are sufficient to retrieve a complete
information of a composite system, including all correlations between the components.
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THEPRINCIPLE OF THE QUANTUMNESS

| POSTULATES [

* K Kk Kk L

* ok ok Kk

P3. Reversibility and Indivisibility of Computation: Every information

processing can be achieved with a reversible one by adding a register in an indivisible
initialization.

* P3 is the synthesis of both parallelism (the indivisibility of initialization) and reversibility of
quantum computation, the former being recognized as the main power of QT since D.
Deutsch, the latter being one of the pillars of modern computer science since C. Bennett's.

* It is the most “quantum” postulate
* All postulates apart from P3 are satisfied by classical theory, P3 is not satisfied by PR boxes
* There is currently no known theory satisfying PI,P2,and P3 apart from QT.
* It is the basis of most quantum information protocols:
* teleportation,
* conditions for error correction,
* no-cloning theorem,
¢ ancilla-assisted tomography, ....

* One can interpret the postulate as a statement of conservation of information, a la Everett.
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THEPRINCIPLE OF THE QUANTUMNESS

POSTULATES

* % % % & I e ik

P4. Indivisibility of Processing Composition: The processing corresponding to
the input-output sequence of two indivisible processings is itself indivisible.

It looks obviously true. However, there is no reason why the same processing obtained by composing two
ones could not be itself achieved in principle by a subroutine which is divisible.

P5. Discriminability of Specific Initializations: For any specific |n|t|al|zat|on there
exists another initialization that can be perfectly discriminated from it.

This also looks obvious, however, it is easy to construct a theory that violates it.

P6. Lossless Compressibility: For any initialization there exists an encoding which is
perfectly decodeable on its refinement set, and the encoded initialization is not specific.

This also looks obvious for a conventional information theory (it would mean that e.g. one can always
encode the initializations corresponding to integers 0-7 on a register of only 3 bits without loss!) This
principle is the starting point of Shannon's and Schumacher's compression. P6 becomes non trivial in a
more general information-processing framework, e.g. if one has different types of registers with the
same number of perfectly discriminable initializations. In our derivation of QT P5 and Pé6 are essential
for quantum-logical structure of QT.
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Physics 1s Information
© |

“It froms

“Information

is physical”

(Bit from It) |
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The Quantumness of Relativity

A QUANTUM-COMPUTER
SIMULATION OF QUANTUM
FIELD THEORY .

BECOMES A NEW FIELD
THEORY

o

arXiv: 1001.1088 [v1] 7 Jan [v6] 9 Feb 2010, PIRSA:10020037
AIP CP 1232, QUANTUM THEORY: Reconsideration of Foundations-5, A.Y. Khrennikov ed., ISBN: 978-0-7354-0777-0
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The Quantumness of Relativity

AND WITH
" OBSERVATIONAL
CONSEQUENCES

(upcoming quant-ph)

o

arXiv: 1001.1088 [v1] 7 Jan [v6] 9 Feb 2010, PIRSA:10020037
AIP CP 1232, QUANTUM THEORY: Reconsideration of Foundations-5, A.Y. Khrennikov ed., ISBN: 978-0-7354-0777-0




HOW RELATIVITY EMERGES
FROM THE COMPUTATION?
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Relativity from QT

‘Input — Output‘

(from causali
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Relativity from QT

(from causality)

‘Input — Output‘




Relativity from QT

(from causality)

‘Input — Output‘




Relativity from QT

(from causality)

causal anfichain = space
-l

causal chain = time (observer)

Input = Output
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topology
(Alexandrov)

Relativity from QT

(from causality)

causal anfichain = space
-l

causal chain = time (observer)

Input = Output
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topology
(Alexandrov)

Relativity from QT

(from causality) event-counting

causal anfichain = space
-l

causal chain = time (observer)

Input = Output
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Relativity from QT

(from causality)
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Relativity from QT

(from causality)
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Relativity from QT

(from causality)
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Relativity from QT

(from causality)
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Relativity from QT

(from causality)
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Relativity from QT

(from causality)
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(from causality)
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Relativity from QT

(from causality)
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Relativity from QT

(from causality)
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Relativity from QT

(from causality)




WE GOT RELATIVITY FROM
PURE CAUSALITY!




WE GOT MUCH MORE:

FROM PURE CAUSALITY WE
GOT SPACE AND TIME
ENDOWED WITH RELATIVITY!




o
Relativity from causality s

\° N

K. H. Knuth, N. Bahreyni, A Derivation of
Special Relativity from Causal Sets, arXiv:
1005.4172<http://lanl.arxiv.org/abs/
1005.4172v1> [math-ph] [v1] 23 May 2010
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Conventionality of

simultaneity, homogeneity, ...
Brid gpiGiee %

The causal network manifests the
conventionality of simultaneity.
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Relativity from QT

A theory of quantum gravity based on quantum computation

Seth Lloyd
Massachusetts Institute of Technology
MIT 3-160, Cambridge, Mass. 02139 USA
slloyd@mit.edu

Keywords: quantum computation, quantum gravity

Abstract: This paper proposes a method of unifying quantum mechanics and gravity based
on quantum computation. In this theory, fundamental processes are described in terms
of pairwise interactions between quantum degrees of freedom. The geometry of space-
time is a construct, derived from the underlying quantum information processing. The
computation gives rise to a superposition of four-dimensional spacetimes, each of which
obeys the Einstein-Regge equations. The theory makes explicit predictions for the back-
reaction of the metric to computational ‘matter,” black-hole evaporation, holography, and

quantum cosmology.

quant-ph/0501135v8 26 Apr 2006
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Lorentz transformations from causality
and topological homogeneity

A causal set is a set N of elements called events a,b,c...e€ N
equipped with a partial order relation < which is:

|. Reflexive: va € N we have a < a
2. Antisymmetric:vVa,beN,we have a<b<a=a=b

3. Transitive: Va,b,ceN,as<b<c=axc

4. Locally finite: va,ceC, |{beN:a<b=<c}|<

GMD and
A. Tosini
1008.4805

Causal Network
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Lorentz transformations from causality =~ SMP o

A. Tosini
and topological homogeneity 1008.4805

A causal set is a set N of elements called events a,b,c...e€ N
equipped with a partial order relation < which is:

|. Reflexive: va € N we have a < a
2. Antisymmetric:vVa,beN,we have a<b<a=a=b

3. Transitive: Va,b,ceN,as<b<c=axc

4. Locally finite: va,ceC, |{beN:a<b=<c}|<

Causal Network

causal network (CN): causal set unbounded in all directions
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Lorentz transformations from causality
and topological homogeneity

GMD and
A. Tosini
1008.4805
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Lorentz transformations from causality — $%°

and topological homogeneity 1008.4805
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(Galileo principle)
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Lorentz transformations from causality and  "P 2

A.Tosini
topological homogeneity 1008.4805

causal chain: C(a,b) :={¢; 7];\;1

with a=ci <co=<...cN=b

sighed cardinality: |C(a, b) ‘:_ = O"C(CL, b)‘

o=+ for a=<b
oc=— for b<a

where

observer: Q, = {Oi}iez

Causal chain
observer

with 0; = 0;41 Vi € Z and a = Oq
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We now define simultaneity of events a and b—denoted
as a ~o b—as follows

a~ob< inf |Oy4(a,b”)|+ = inf |Op(b,a™)|+. (2)

b*EJj a*EJj

Depending on the shape of the observer chain, one may
have situations in which there are no synchronous events.
However, it is easy to see that for an observer that is topo-
logically homogeneous (i. e. periodic) there always exist
infinitely many simultaneous events. Moreover, modulo
event coarse-graining, without loss of generality we can
restrict only to observers with a zig-zag with a single pe-
riod, with a > 1 steps to the right and 8 > 1 steps to
the left (we will call them simply periodic). Each ziz-zag

GMD and
A. Tosini

1008.4805
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We now define simultaneity of events a and b—denoted
as a ~o b—as follows

0 ~obe inf |Og(a,b")|s = inf [Op(d,a*)s. (2)
b*EJj a*EJj

Depending on the shape of the observer chain, one may
have situations in which there are no synchronous events.
However, it is easy to see that for an observer that is topo-
logically homogeneous (i. e. periodic) there always exist
infinitely many simultaneous events. Moreover, modulo
event coarse-graining, without loss of generality we can
restrict only to observers with a zig-zag with a single pe-
riod, with a > 1 steps to the right and 8 > 1 steps to
the left (we will call them simply periodic). Each ziz-zag
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GMD and
A. Tosini

Lorentz transformations from causality
and topological homogeneity 1008.4805

The given notion of simultaneity allows us to associate
each observer with a foliation of the CN. For each event
0; € Qg thereis a leaf L;(O,), which is the set of events si-
multaneous to o; with respect to the observer O,, namely

LZ-(Oa) = {b cN:a~p Oz'}. (3)

The collection of all leaves for all the events in O, is the
foliation L(O,) of N associated to the observer O,

Foliation

L(Oa) - = {I—'L’(Oa)a\v/i = Z}' (4)
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For a given foliation L(O,) we can now define a pair of
coordinates z(b) for any event b € L(O,) via the map

Ko :N— 72, bws Ko, (b) = z(b) — [ZEZ;] |

21(b) = inf |O4(a,b™)|+, 22(b) == inf |Oy(b,a")|+.

b* et a*el)s

°0

ok
A
e :)’: [
0000
% L
é%qﬁé”””““’
G ot A
0062620266266
110700 00 0 06 04
'@JOQQQQQ&&&V

GMD and
A. Tosini
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Lorentz transformations from causality =~ SMP o

A. Tosini
and topological homogeneity 1008.4805

Lemma 1 An event b € L(O,) belongs to the t-th leaf
L:(O,) fort = (21 — 22)/2, and the number of events on

where U(#) is the matrix performing a #-rotation, can be

interpreted as the space-time coordinates of the event b
in the frame L(O,).

such leaf between b and O, is given by s = (21 + 22)/2. 3
e

O

According to the last Lemma the coordinates ._g
2% = 22U(n/4) EEZH , (10) 3

O
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Frames in standard configuration (boosted). Consider
now two observers O, = {o;} and O; = {07} sharing
the same origin (homogeneity guarantees the existence
of observers sharing the origin). We will shortly denote
the two frames as ' and %%, and the corresponding co-
ordinate maps as K! and K?. We will say that the two
frames ®' and %% are in standard configuration if there
exist positive a'?, 312, such that Vi € Z

K'(6?) = D?K2(6?), D' := ding(a'?, 3%).  (11)

GMD and
A. Tosini

1008.4805
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Lorentz transformations from causality — $%°

and topological homogeneity 1008.4805
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Lorentz transformations from causality

and topological homogeneity

12 23

» 13 _ — 1232 - V12 T V23
012023 | 312323

1 + v12v923

GMD and
A. Tosini
1008.4805

Coordinates
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GMD and
A. Tosini

and topological homogeneity 1008.4805

Lorentz transformations from causality

12 23

» 13 _ — pl2 % - V12 T V23
012023 | 312323

1 4+ v12v23

t2 —|—U1282 . 82 —|—’012t2
) S = )
VI= @y =y
X12 = \/0412512

which differ from the Lorentz transformations only by the
multiplicative factor x12. The factor x12 can be removed
by rescaling the coordinate map in Eq. (10) using the

factor (2045)% in place of 22, with the constants « and 3

th = x12

Coordinates
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SIMULATING QFT

e :I Simple scalar fields in 1 space dimension _

* Kk ok ok

2a

(@) topon space-granularity (minimal in principle discrimination
between independent events);

@ chronon time-granularity;

¢ (x)) field, operator function of space (evolving in time); we will
describe it by the set of operators|@, := a2 ¢ (na)

enerally nonlocal operators. In QFT they satisfy (anti)commutation relations

Microcausality (equal time) CAUSAL SPEED

[¢Ly ¢m]:: — 5nm : d

+ : Fermi T

- : Bose (Newton-Wigner)
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Quantum-computational
5 simulation of QFT 5

PROBLEM with QFT: “violation” of Einstein causality

Simulation of QFT with a quantum computer, with gates
performing infinitesimal transformations:

the simulation gives back exactly QFT in the limit 7,a — 0
and for infinite circuit, but ...

g

fUC s O ' Lorentz-covariance is not a consequence
of QM (causality)!

Einstein causality only in average!

Galileo!
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&

THENEW QCFT

Finite gate-transformations (not infinitesimal!)
The causal speed v.. is finite!

+

Lorentz’s transformations
emerge from the causal
hetwork

* Different QFT

observational consequences!

swap

_—— == S —_=ue —
—
]
o
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* K Kk Kk

THENEW QCFT

Simple scalar fields in 1 space dimension {

* Kk ok ok

Coarse-grained discrete derivatives:

a a

“HAMILTONIAN"
ngtlgz = 2nLT[z(m') — 2(—n7)] = 02
5 .
Hio oz = o= (UpzU} — UJ 2Uy)
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THENEW QCFT

| MASSLESS KLEIN GORDON FIELD

* * * K |

* ok ok ok

NEW QFT: finite gate-transformations (not infinitesimal!)

G g i D

Hg;leqb iavcé\xgbg, o=

-

swap

* swap Swety, | | swap

H®

gate

¢n e igzvcam¢n o o

R [ [ B S I
H
]
T,

n—-1, n-1 n n+l1, n+l
a a a a a
A_gz 152

= t
X 1}2
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gi bre 2

" THENEW QCFT

KLEIN GORDON WITH MASS

{ * Kk Kk Kk

- What is
inertial mass?




THENEW QCFT

| KLEIN GORDON WITH MASS

PR |

* k * *
We need to develop a path-sum calculus over the circuit:

|. Number all the input wires at each gate, ‘ ‘

from the leftmost to the rightmost one, and
do the same for the output wires

2. We say that a wire | is in the past-cone of
the wire k if there is a path from [ to k

passing through gates.
3. For any output wire k and any input wire

| in its causal past cone, consider all paths
connecting k with |

ST P S T R

4. The following linear expansion holds

aty=> U2 Ul z0)

1112 ~ 1213 Tntnt1

1K1 1 = (ilig . inin_|_1) with 11 =k, 1,11 = [,
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THENEW QCFT

| KLEIN GORDON WITH MASS

PR |

* Kk ok ok

“Hamiltonian’’

gate — 4r

ﬁﬁiﬁm&ﬁ—ﬂﬂ$&+4m3u—ﬂﬁ% (A21B22 — Bi; A}1)d_ + AssBro — B, Al
(A12B11 — Bi,Al,)84 + A11Boy — BL AL, A13B126, — By AL 6_ + A11Boy — B, Al
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THENEW QCFT

| KLEIN GORDON WITH MASS

PR |

* Kk ok ok

“Hamiltonian”
¢[M¢M5Eh4ﬁ++®ﬁh Bl Al,  (A21Byy — B] Al )6_ + ApBis — B, Al
(A12B1: B$2AJ{2)5+ + A11 B2 BglAgz A12B1204 — B$1A$15— A A5, — B$2AI1

Hermiticity is satisfied:

(05 [Hi|0:5) = (9 [H e |975)* = i(AuaBps — AL,B],) € R,

(0, nge 0, ) = (9, ng 0,)" = (AppBiy —A},B},) = —(A11By1 —ALB} )",
(02| Hine o) = <¢f\Hgate\¢nH>* A B

<¢J|H$2@|¢J_1> = <¢J!Hgate| 1) —> A 1By — A} B} = —(A12B11 —A],B),)*
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THENEW QCFT

| KLEIN GORDON WITH MASS ( SPINLESS DIRAC)

* * K K * * K K
Write the “Hamiltonian™ as follows: (inverse) refraction index
HY = c(H + iKO i — z’c{‘@( + wo FEEES o
gate 8 e T T T
‘ e | | e (=2
Hy1 = — =S(A21Ba1 + Ag2Bi1) = 0, A A
Hyp =4 (A21Baz — ATy By + A2 Biz — A7 B3y ) = X7 | Egs
Hjy = — 5-S3(A12B12 + A11Bgs) = 0, | B B B
6 == A E = | | | | | | =0
Koz =R(A12B12) = —¢, + - + _ + b
1 * * q)—l (I)—] (I)O (I)O (PI—] (I?l-]
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THENEW QCFT

| KLEIN GORDON WITH MASS ( SPINLESS DIRAC)

* * K K * * K K
Write the “Hamiltonian™ as follows: (inverse) refraction index
HY = c(H + iKO i — z’c{‘@( + wo FEEES o
gate 8 e T T T
‘ e | | e (=2
Hy1 = — =S(A21Ba1 + Ag2Bi1) = 0, A A
Hyp =4 (A21Baz — ATy By + A2 Biz — A7 B3y ) = X7 | Egs
Hjy = — 5-S3(A12B12 + A11Bgs) = 0, | B B B
6 == A E = | | | | | | =0
Koz =R(A12B12) = —¢, + - + _ + b
1 * * q)—l (I)—] (I)O (I)O (PI—] (I?l-]

A - '? cos 6 etV siné’}

_—e‘w sinf e " cosf
B 0 jet?
_—ie_w 0
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THENEW QCFT

| KLEIN GORDON WITH MASS ( SPINLESS DIRAC)

* Kk Kk * * Kk Kk *
Write the “Hamiltonian™ as follows: (inverse) refraction index
HY = c(H + iKO i — z’c{‘@( + wo FEEES o
gate 95y A T T 9 e
‘ < | | e =2
Hi1 = — %%(A21321 ar A22Bll) —— 07 A A
Hiz =4, (A1 By — A}, BYy + A2eBio — A1 B3y) = A7 | e
Hop = — =S3(A12B12 + A11B22) = 0, | B B B
K1, = — R(A21B21) = ¢, | | | | | | =0
K :%(A B ) = —C’ -k - + i + i
22 D B4 q)_] (I)_] (I)o (I)o (PL] (Pr]

Ko = — (A1 By — A}y B7,) = 0.

"% cosf e sin 0

_—e_w sinf e '?cos6

B 0 jet?
_—ie_i(b 0

A —
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MASS-DEPENDENT REFRACTION INDEX
OF VACUUM -

General phenomenon due to unitariety

0.2 0.4 0.6 0.8 10 M




MASS-DEPENDENT REFRACTION INDEX
OF VACUUM

General phenomenon due to unitariety

Proof. We need the gate-HamiItoniah:

— iCCO‘g@x -+ WO
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MASS-DEPENDENT REFRACTION INDEX
OF VACUUM

General phenomenon due to unitariety

Proof. We need the gate-HamiItoniah:

cate — 60030, + woy

We must have the same number n of time-

steps and of space-steps, and from the form of
the Hamiltonian we get n=2.
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MASS-DEPENDENT REFRACTION INDEX
OF VACUUM

General phenomenon due to unitariety

Proof. We need the gate-HamiItoniah:

cate — 60030, + woy

We must have the same number n of time-

steps and of space-steps, and from the form of
the Hamiltonian we get n=2.

The Hamiltonian is Hermitian, whence:

s 4 i
Hgate S E(Uf i Uf)
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MASS-DEPENDENT REFRACTION INDEX
OF VACUUM

General phenomenon due to unitariety

Proof. We need the gate-HamiItoniah:

cate — iCCO’g@x -+ WO

We must have the same number n of time-

steps and of space-steps, and from the form of
the Hamiltonian we get n=2.

The Hamiltonian is Hermitian, whence:

e e ; (4)
Hgate = 47_ Uf W U » ”HgateH ~
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MASS-DEPENDENT REFRACTION INDEX
OF VACUUM

General phenomenon due to unitariety

Proof. We need the gate-HamiItoniah:

cate — iCCO’g@x -+ WO

We must have the same number n of time-

steps and of space-steps, and from the form of
the Hamiltonian we get n=2.

The Hamiltonian is Hermitian, whence:

e e ; (4)
Hgate = 47_ Uf W U » ”HgateH ~

The norm is obtained by FT at k = o~
V2 1 47202 .
2T S
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MASS-DEPENDENT REFRACTION INDEX
OF VACUUM

General phenomenon due to unitariety

Proof. We need the gate-HamiItoniah:

cate — iCCO’g@x -+ WO

We must have the same number n of time-

steps and of space-steps, and from the form of
the Hamiltonian we get n=2.

The Hamiltonian is Hermitian, whence:

Eljp oot ; (4)
Hgate = 47_ Uf W U » ”HgateH ~

The norm is obtained by FT at k = o~
V2 1 47202 .
2T S

namely for w = ¢\~ 'one has: ﬁ

. s — ————
giovedi 30 dicembre 2010




THENEW QCFT

—————— KLEINGORDON WITHMASS (SPINLESS DIRAC)

| e®cosb e’ sin 0 0 i
A-| | B=| 0w O]

—e~Wsinfh e cosb

YR O o R
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THENEW QCFT

—————— KLEINGORDON WITHMASS (SPINLESS DIRAC)

A:{ e'? cos 6 ewsinﬁ} B _ { 0 | iew]

—e~Wsinfh e cosb

-
W.l.gfix ¢ =0, 1) = —m/2 ;L;—HHJ:J—. ]
< AN
br b b1 b

2a
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THENEW QCFT

| KLEIN GORDON WITH MASS ( SPINLESS DIRAC)

o O £

e'? cos e sin 0 0 jel®
A-| R R |

—e~Wsinfh e cosb

—je® 0

W.lg.fix ¢ =0, v = —7/2 1 LA )
For both Bose and Fermi fields one has: B | | | w

. _ _ IS TS T
A = exXp {7/9 |:¢’;L|_T¢n—1 —|_ ¢n_1-‘.¢;l;i| } ¢n ;bn ¢n—|—1 ¢n—|—1

a

B =exp {iZ [oF16n + o))
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THENEW QCFT

| KLEIN GORDON WITHMASS (SPINLESS DIRAC) |

* K Kk Kk

A = exp {0 [qﬁ;f]tgb;_l + qb,,:_qub;t] 1 S Ny B8

B =exp{i5 [o 6, + 0, 651} ;i._i:)_-' |
. i
-

o S
¢n ¢n ¢n—|—1 ¢n—|—l
2a >

* Kk ok ok
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THENEW QCFT

| KLEIN GORDON WITHMASS (SPINLESS DIRAC) |

* K Kk Kk

Commuting Anticommuting g . B ' | '

armonic oscillator | Clifford algebra s S RS 5
n—1 ¢n ¢n ¢n—|—1 ¢n—|—1
la;,al] = oy 6 =05 |1 o515 2a

gbﬂ; = Q2n @, = G2n41 Gr, = O2n1+103n H o

k==—0
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THENEW QCFT

| KLEIN GORDON WITHMASS (SPINLESS DIRAC) |

Commuting Anticommuting g . B ' | '

armonic oscillator | Clifford algebra D P I O
n—1 n n n+1 ¥Yn+1
[al, CLT] — 0k b=, O5k+10k 2a

nm—1

gbﬂ; = Q2n @, = G2n41 Gr, = O2n1+103n H o

k=—o0

Gates act
B =+ + 5T
) | A=l o o)) | i
B P oo 4+ — — _+
B =exp|—t5 (02n02n+1 T 0-2n0-2n-|-1)} only!
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THENEW QCFT

CONNECTION WITH THE USUAL QFT |

* * * K &

* Kk ok ok

2
Global field Hamiltonian, i. e. such that: [H, @] — Hé;argg@




THENEW QCFT

| CONNECTION WITH THE USUAL QFT |

* * * K |

2
Global field Hamiltonian, i. e. such that: [H ¢l] Héargg@

» H = — Zgbz Hgﬁ (*)

3 T —

* Kk ok ok
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THENEW QCFT

| CONNECTION WITH THE USUAL QFT | ————

PR |

Global field Hamiltonian, i. e. such that: [H ¢l] ngg@
2n
# H = Z¢; Hg(;atc)a (%)

For a given field theory to be simulable by a homogeneous

quantum computer in the discrete approximation ¢(la) — a_§¢l
one needs the field Hamiltonian that can be written in the form (*)

with then, > 1 satisfying the bound

I o

t
SS5 nT
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THENEW QCFT

| CONNECTION WITH THE USUAL QFT | ————

PR |

Global field Hamiltonian, i. e. such that: [H ¢l] ngg@
2n
# H = Z¢; Hg(;atc)a ()

For a given field theory to be simulable by a homogeneous

quantum computer in the discrete approximation ¢(la) — a_§¢l
one needs the field Hamiltonian that can be written in the form (*)

with then, > 1 satisfying the bound

W— *

I o

t
SS5 nT

» All known QFT are QC-simulable!
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FIRST QUANTIZATION

| EMERGENCE OF CCR

* K Kk Kk * &k k Kk

Constant of motion (number of “particles™)

N=> ¢i¢.=) o8 o N= Z han

J T —




FIRST QUANTIZATION

| EMERGENCE OF CCR

* K Kk Kk * &k k Kk

Constant of motion (number of “particles™)

N=> ¢i¢.=) o8 o N= Z han

L —

Vacuum state (invariant under processing): ‘O> — H |O>n




FIRST QUANTIZATION

| FEMERGENCE OF CCR

* K Kk Kk L * &k k Kk

Constant of motion (number of “particles™)
_ _ 3
N—g gb};gbn—g B | or [N = E an
n n

Vacuum state (invariant under processing): ‘O> — H |O>n

Single-particle states: ‘¢g> e ¢gT ‘()> (bbm information encoding!)
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FIRST QUANTIZATION

J EMERGENCE OF CCR |

DAL L * ok ok Kk

Constant of motion (number of “particles™)
_ _ 3
N—g gb;fngn—g B | or [N = E an
n n

Vacuum state (invariant under processing): ‘O> — H ‘O>n

Single-particle states: ‘¢g> e ¢$‘LT ‘()> (bbm information encoding!)

*=—ih) |¢2)0: (g2, X*=2a) |¢pT)n(¢C
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FIRST QUANTIZATION

EMERGENCE OF CCR J

* * * K J

* ok ok Kk

Constant of motion (number of “particles™)
_ _ 3
N—g gb;fngn—g B | or [N = E an
n n

Vacuum state (invariant under processing): ‘O> — H ‘O>n

Single-particle states: ‘¢g> e ¢$‘LT ‘()> (bbm information encoding!)
*=—ih) |emos(enl, X% =2a) |o7)n(sn
wl) (X, PP = ildapla
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FIRST QUANTIZATION

Single-"particle” Schrodinger equation in ppm representation:

i
V= lgralm| 0onlY
< n—|—1|\Ij>
H=c

i0,U = HU

S

) = (0]

oooooo

HY

gate

oooooo

n]”

v) =
£ 0
G-
0 A
A 0
% o
o

oooooo
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Jordan realization of the

SIMULATING QFT

NONABELIAN

2nd quantization

GAUGE INVARIANCE

R —

ABELIAN




SIMULATING QFT

GAUGE INVARIANCE [

NONABELIAN
ﬁ;

| SE

. " ﬁn .

*x Kk Kk Kk

2nd quantization




SIMULATING QFT

| GAUGE INVARIANCE [

NONABELIAN
ﬁ;

| SE

‘ " ﬁn .

Natively nonabelian Gauge theory! Good for
and on ... foliation !!! Gravity!

*x Kk Kk Kk

2nd quantization
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T QCFT in 3 space dimensions? I
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'THENEW QCFT

QCFT in 3 space dimensions? I

* % % % i

*x Kk Kk Kk

No anticommuting fields in more
than one space dimension!




'THENEW QCFT

T QCFT in 3 space dimensions? [

* * * K | S

No anticommuting fields in more
than one space dimension!

Do we really need anticommuting fields?

Grassman variables?




'THENEW QCFT

T QCFT in 3 space dimensions? [

* * * K | S

No anticommuting fields in more Microcausality and parastatistics
than one space dimension!

Do we really need anticommuting fields?

Grassman variables?




&

Advantages of QCF'T versus QF 1T

o




&

Advantages of QCF'T versus QF 1T

QFT Problems from
PROBLEMS continuum

o




Advantages of QCF'T versus QF 1T

& &

Other ,
. Feynman's
mathematical —— .
path integral
problems

QFT Problems from
PROBLEMS continuum

infinities

(renormalization of
uv divergencies)
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Advantages of QCF'T versus QF 1T

<
Other ,
. Feynman's
mathematical — th intearal
problems P J
QFT Problems from
PROBLEMS continuum

—

PB
quantization
and h

infinities
(renormalization of
uv divergencies)

Operationally
meaningless

Grassman
variables

@
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Action
at distance
or
at contact

Logical
problems

PB
quantization
and h

Advantages of QCF'T versus QF 1T

Other ,

. Feynman's
mathematical — th intearal
problems P J

QFT Problems from
PROBLEMS continuum

Operationally
meaningless

Grassman
variables

infinities
(renormalization of
uv divergencies)

@
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Action
at distance
or
at contact

Logical
problems

PB
quantization
and h

Other ,

. Feynman's
mathematical — Jth intearal
problems P J

QFT Problems from
PROBLEMS continuum

Operationally
meaningless

Grassman
variables

infinities
(renormalization of
uv divergencies)

Advantages of QCF'T versus QF 1T

QCFT
SOLUTIONS

@
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Action
at distance
or
at contact

Logical
problems

PB
quantization
and h

Other ,

. Feynman's
mathematical — Jth intearal
problems P J
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% 1s fun! (good excuse for QI people to come back to physics)
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