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Energy Density Functionals

Consistent microscopic 
framework for a unified 

description of bulk properties, 
excitations and reactions! 

Density Functionals
(self-consistent mean fields)

The many-body problem is mapped onto a one body problem without explicitly 
involving inter-nucleon interactions!

The exact density functional is approximated with powers and gradients of 
ground-state nucleon densities and currents. 
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Local densities and currents:

T=0 density:

T=1 density:

T=0 spin density:

T=1 spin density:

ρ0(r) = ρ0(r, r) =
�

στ

ρ(rστ ; rστ)

ρ1(r) = ρ1(r, r) =
�

στ

ρ(rστ ; rστ) τ

s0(r) = s0(r, r) =
�

σσ�τ

ρ(rστ ; rσ�τ) σσ�σ

s1(r) = s1(r, r) =
�

σσ�τ

ρ(rστ ; rσ�τ) σσ�σ τ

jT (r) = i
2 (∇� −∇) ρT (r, r�)

��
r=r�

JT (r) = i
2 (∇� −∇)⊗ sT (r, r�)

��
r=r�

τT (r) = ∇ ·∇� ρT (r, r�)
��
r=r�

TT (r) = ∇ ·∇� sT (r, r�)
��
r=r�

Current:

Spin-current tensor:

Kinetic density:

Kinetic spin-density:
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Relativistic Energy Density Functionals 

✔ natural inclusion of the spin degree of freedom (spin-orbit 
potential with empirical strength)

✔ unique parameterization of time-odd components (currents) of 
the nuclear mean-field

✔ the distinction between scalar and vector self-energies leads to a natural 
saturation mechanism for nuclear matter
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Advantages of the Energy Density Functional  
approach to nuclear structure
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Advantages of the Energy Density Functional  
approach to nuclear structure

Important for extrapolations to regions far from stability!

✔ an intuitive interpretation of mean-field results in terms of intrinsic 
shapes and single-particle states

✔ the full model space of occupied states can be used; no distinction 
between core and valence nucleons, no need for effective charges

✔  the use of universal density functionals that can be applied to 
all nuclei throughout the periodic chart
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 ... microscopic foundation for a universal EDF framework, related
to and constrained by low-energy QCD
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... accurate and controlled approximations for the nuclear exchange-
correlation energy functional

 ... microscopic foundation for a universal EDF framework, related
to and constrained by low-energy QCD
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... accurate and controlled approximations for the nuclear exchange-
correlation energy functional

... correlations related to restoration of broken symmetries and 
fluctuations of collective coordinates

 ... microscopic foundation for a universal EDF framework, related
to and constrained by low-energy QCD
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Semi-empirical functionals

... start from a favorite microscopic nuclear matter EOS 

Infinite nuclear matter cannot determine the density functional on the level of 
accuracy that is needed for a quantitative description of structure phenomena in 
finite nuclei.

... the parameters of the functional are fine-tuned to data of finite nuclei
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Semi-empirical functionals

... start from a favorite microscopic nuclear matter EOS 

Infinite nuclear matter cannot determine the density functional on the level of 
accuracy that is needed for a quantitative description of structure phenomena in 
finite nuclei.

... the parameters of the functional are fine-tuned to data of finite nuclei

DD-PC1

... starts from microscopic nucleon self-energies in nuclear matter.

... parameters adjusted in self-consistent mean-field calculations of masses of 64 
axially deformed nuclei in the mass regions A ~ 150-180 and A ~ 230-250.

Nikšić, Vretenar, and Ring, Phys. Rev. C 78, 034318 (2008) 
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DD-PC1
av = −16.06 MeV

as = 17.498 MeV

�S2� = 27.8 MeV (a4 = 33MeV)

volume energy:

surface energy:

symmetry energy:

... calculated masses of finite nuclei are primarily sensitive to the three leading terms 
in the empirical mass formula:

EB = avA + asA
2/3 + a4

(N − Z)2

4A
+ · · ·

... generate families of effective interactions characterized by different values of av, as 
and a4, and determine which parametrization minimizes the deviation 
from the empirical binding energies of a large set of deformed nuclei.
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Deformed nuclei

Z 62 64 66 68 70 72 90 92 94 96 98
Nmin 92 92 92 92 92 72 140 138 138 142 144
Nmax 96 98 102 104 108 110 144 148 150 152 152

Binding energies used to adjust the parameters of the functional:
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Systematic calculation of ground-state properties:
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Excitation energies of collective modes:
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Nuclear Many-Body Correlations

short-range
(hard repulsive core of 
the NN-interaction)

long-range 
nuclear resonance 
modes 
(giant resonances)

collective correlations
large-amplitude soft modes:
(center of mass motion, rotation,
low-energy quadrupole vibrations)
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Nuclear Many-Body Correlations

short-range
(hard repulsive core of 
the NN-interaction)

long-range 
nuclear resonance 
modes 
(giant resonances)

collective correlations
large-amplitude soft modes:
(center of mass motion, rotation,
low-energy quadrupole vibrations)

...vary smoothly with nucleon number!
Can be included implicitly in an effective 
Energy Density Functional.

...sensitive to shell-effects and strong variations 
with nucleon number!
Cannot be included in a simple EDF framework.  
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1.Mean-field calculations, with a 
constraint on the quadrupole 
moment.

2.  Angular-momentum and 
    particle-number projection.

3. Generator Coordinate Method
 ⇒ configuration mixing

Collective correlations ➔ 
restoration of broken 
symmetries and fluctuations 
of collective variables
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triaxial shapes, breaking time-reversal invariance, different 
deformations for proton and neutron distributions, ... 

... larger variational space for projected GCM calculations!
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3D AMP + GCM model

... larger variational space for projected GCM calculations!
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3D AMP + GCM model

... larger variational space for projected GCM calculations!
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3D AMP + GCM model

Yao, Meng, Ring, Vretenar, 
Phys. Rev. C 81, 044311 (2010) 

... larger variational space for projected GCM calculations!
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Five-dimensional collective Hamiltonian

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom

Hcoll = Tvib(β, γ) + Trot(β, γ,Ω) + Vcoll(β, γ)

Tvib =
1
2
Bββ β̇2 + βBβγ β̇γ̇ +

1
2
β2Bγγ γ̇2

Trot =
1
2

3�

k=1

Ikω2
k

Vcoll(β, γ) = Etot(β, γ)−∆Vvib(β, γ)−∆Vrot(β, γ)

Nikšić, Li, Vretenar, Prochniak, Meng, Ring, Phys. Rev. C 79, 034303 (2009) 
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Five-dimensional collective Hamiltonian

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom

Hcoll = Tvib(β, γ) + Trot(β, γ,Ω) + Vcoll(β, γ)

Tvib =
1
2
Bββ β̇2 + βBβγ β̇γ̇ +

1
2
β2Bγγ γ̇2

Trot =
1
2

3�

k=1

Ikω2
k

The quasiparticle wave functions and energies generated from constrained self-consistent 
solutions of a mean-field model, provide the microscopic input for the parameters of the 
collective Hamiltonian.

Vcoll(β, γ) = Etot(β, γ)−∆Vvib(β, γ)−∆Vrot(β, γ)

Nikšić, Li, Vretenar, Prochniak, Meng, Ring, Phys. Rev. C 79, 034303 (2009) 
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Fission path and barriers:

Li, Nikšić, Vretenar, Ring, Meng, Phys. Rev. C (2010) 

Test of DD-PC1:
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Evolution of triaxial shapes in Pt nuclei: 
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How does the functional DD-PC1 extrapolate to other mass regions?
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Shape-coexistence in neutron-deficient Kr isotopes
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2344
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Coexisting shapes in the N=28 isotones
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Neutron N=28 spherical energy gaps
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Neutron N=28 spherical energy gaps

Experimental values: 

4.80 MeV 

4.47 MeV
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46Ar: single-particle levels
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46Ar: single-particle levels
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44S: single-particle levels
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44S: single-particle levels
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42Si: single-particle levels
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42Si: single-particle levels
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✔ unified microscopic description of the structure of stable and
nuclei far from stability,  and reliable extrapolations toward the 
drip lines.

Nuclear Energy Density Functional Framework

✔ when extended to take into account collective correlations, 
it describes deformations and shape-coexistence phenomena 
associated with shell evolution.

✔ fully self-consistent (Q)RPA analysis of giant resonances, low-energy 
multipole response in weakly-bound nuclei, dynamics of exotic modes of 
excitation.
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