γ-ray spectroscopy far from stability with MINIBALL

- Overview Physics Case
- MINIBALL @ REX-ISOLDE
- News from the ,Island of Inversion'
- Perspectives

Peter Reiter IKP, University of Cologne for the MINIBALL collaboration

EGAN 2011 workshop Padova, 27-30 June 2011

Shell Model Physics with MINIBALL@REX-ISOLDE

Shell Model Physics with MINIBALL@REX-ISOLDE

Isomeric beams @ ISOLDE

- technique based on in-source laser spectroscopy (U. Köster et al., NIM B160, 528 (2000), L. Weissman et al., PRC 65, 024315 (2000))
- set the laser frequency to select and maximize the production of the isomer of interest

Spectroscopy with Cu isomer beams I. Stefanescu et al. PRL 98, 122701 (2007)

talk by E. Rapisarda

RIB preparation @ REX-ISOLDE

Beam quality, monitoring, quantitative composition

The MINIBALL Coulomb excitation setup

segmented Si detector for particle detection (DSSSD)

- 16 rings (front side)
- 96 strips (back side)
- angle coverage: $\theta_{lab} = 16-55^{\circ}$
- ΔE-E measurement possible (pad)

The T-REX setup

Talks by J. Diriken, D. Mücher

T-REX: Si detector array for <u>Transfer experiments at REX-ISOLDE</u>

- large solid angle (58% of 4π)
- position sensitive
- PID (ΔE-E): p, d, t, a,

... and e^{-} from β -decay (!)

Technical details: Barrel: 140 mm ΔE / 16 resistive strips 1000 mm E / pad Backward CD: 500 mm ΔE / DSSSD 500 mm E / pad

<u>V. Bildstein</u>, <u>K. Wimmer</u>, Th. Kröll, R. Gernhäuser et al. (funded by TU München, KU Leuven, U Edinburgh, CSNSM Orsay, TU Darmstadt)

Deviations from classical shell model

Outline - Physics case - MINIBALL@REX-ISOLDE - Island of Inversion - Perspectives

"Island of Inversion"

1975, ISOLDE: C. Thibault et al.: Masses show considerable deviations for nuclei around Z=11, N=20. \Rightarrow additional binding energy

Normal sd-shell configuration

OpOh, spherical

-sd

– pf

- mixed sd-pf

E.K. Warburton, J. A. Becker and B. A. Brown, PRC 41 (1990) 1147.

T. Motobayashi, et al.; PLB 346 (1995) 9

E2

 31 Mg

island of

inversion

2+

<mark>•</mark>∩+

Ρ

Si

Al

Mg

Where are the borders?

How does transition into island of inversion occur?

Does picture of shape coexistence hold?

Outline - Physics case - MINIBALL@REX-ISOLDE - Island of Inversion - Perspectives

g-factor and spin of the ^{31,33}Mg ground state

Intruder ground state configurations:

G. Neyens et al., PRL 94, 022501 (2005) D. Yordanov et al., PRL 99, 212501 (2007) laser spectroscopy and β -NMR g-factor and spin for ³¹Mg and ³³Mg from sign of g-factor \rightarrow parity

³¹Mg, $I^{\pi} = 1/2^+ v(sd)^{-3} (fp)^2$ ³³Mg, $I^{\pi} = 3/2^- v(sd)^{-2} (fp)^3$

 \rightarrow pure 2p-2h intruder ground states !

Normal ground state configurations:

Renewed β -decay studies

³¹Mg F. Maréchal et al., PRC 72, 044314 (2005)
³³Mg V. Tripathi et al., PRL 101, 142504 (2008)

Outline - Physics case - MINIBALL@REX-ISOLDE - Island of Inversion - Perspectives

collective properties of ³¹Mg

– β -decay studies of ^{31}Mg at GANIL

- shell model calculation *sd-fp* valence space ANTOINE code, effective interaction SDPF-NR

collective properties of positive K=1/2 rotational band of ${}^{31}Mg$: excitation energy, quadrupole moment Q, B(E2), magnetic moment μ , B(M1)

	\frown					\frown		
J	E_x	$n_{d_{5/2}}^{\nu}$	$n^{v}_{d_{3/2}}$	$n_{s_{1/2}}^{\nu}$	Q_s/Q_0	B(E2)	μ	B(M1)
1/2	0	5.62	1.99	1.33			-0.98	
3/2	101	5.63	1.77	1.56	-17/84	106	+0.56	0.06
5/2	988	5.60	2.02	1.31	-17/59	127	-0.30	0.38
7/2	1236	5.63	1.68	1.64	-25/75	151	+0.94	0.04
$K = 1/2^+$		5.75	1.52	1.73				

F. Maréchal *et al.*, Phys. Rev. C **72**, 044314 (2005) M. Kimura, Phys. Rev. C **75**, 041302(R) (2007)

Coulomb excitation ³¹Mg

GOSIA Coulex calculation

Results:

- one step E2 excitation

B(E2, 1/2⁺→5/2⁺) = 182 e²fm⁴

- decay of (5/2+,3/2+) level via M1 transition $B(M1, 5/2^+ \rightarrow 3/2^+) = 0.1 - 0.5 \mu_n^2$

- results confirms strong collective excitation - rotational sequence: $1/2^+ \rightarrow 3/2^+ \rightarrow 5/2^+$

M. Seidlitz et al; PLB 700 (2011) 181

electron spectroscopy after β-decay at ISOLDE
 first excited 0⁺ state at 1789 keV in ³⁰Mg

W. Schwerdtfeger, et al; PRL 103, 012501 (2009)

Shape coexistence in ³⁰Mg

electric monopole (E0) transition to ground state: $\rho^2(E0)=(26.2 (7.5)) \times 10^{-3}$

beyond-mean-field calculations with Gogny force:

- two competing configurations, small mixing
- largely different intrinsic quadrupole deformation
- ground state: 1d_{3/2} neutrons
- first excited 0⁺ state: 1f_{7/2} neutrons

predictions for ³²Mg

experimental values ("E").										
		$E_x(2_1^+)$ (MeV)	$E_x(0_2^+)$ (MeV)	$B(E2, 0^+_1 \rightarrow 2^+_1) \ (e^2 \ {\rm fm}^4)$	$\rho^2(E0) \times 10^{-3}$	$B(E2, 0^+_2 \rightarrow 2^+_1) \ (e^2 \ \text{fm}^4)$				
30 M a	(T)	2.03	2.11	334.6	46	181.5				
wig	(E)	1.482	1.789	241(31) [9]	26.2 ± 7.5	53(6)				
³² Mg	(T)	1.35	2.60	455.7	41	56.48				
	(E)	0.885		454(78) [5]						

TABLE I. Results from beyond-mean-field calculations with Gogny force for ${}^{30}Mg$ and ${}^{32}Mg$ (indicated as "T") compared to experimental values ("E").

W. Schwerdtfeger, et al; PRL 103, 012501 (2009)

t(³⁰Mg, ³²Mg)p – two-neutron transfer

- ³H loaded Ti foil (40 μg/cm² ³H, 10 GBq)
- ³⁰Mg @ 2 MeV/u
- 4-10⁴ part/s / 150 h beam on target
- Q₀₀ = -295(20) keV
- Two states populated: ground state and new state at 1083(33) keV

K. Wimmer et al; PRL 105, 252501 (2010)

g.s. occupation numbers using effective USD / SDPF-M interactions: B. H. Wildenthal, Prog. Part. Nucl. Phys. 1, 5 (1984) T. Otsuka et al., Prog. Part. Nucl. Phys. 47, 319 (2001)

Transfer to ground state in ³²Mg

- pure transfer to $(f_{7/2})^2$ to small
- large contribution from $(p_{3/2})^2$ needed (a > 0.7)

... SDPF-M underestimates the $\nu p_{3/2}$ content in the wave functions

Transfer to excited 0⁺ state in ³²Mg

- wave function similar to g.s. in ³⁰Mg
- two-neutron spectroscopic amplitudes for pure sd \rightarrow sd transitions
- cross section underestimated, small $(p_{3/2})^2$ amplitude (a ≈ 0.3)

K. Wimmer et al; PRL 105, 252501 (2010)

HIE-ISOLDE

- intensity upgrade
- energy upgrade

HIE-ISOLDE

instrumentation for energetic beams

- Main workhorse : MINIBALL + TREX
- New detectors :
 - ✤ MAYA/ACTAR active target
 - SPEDE SPectrometer for Electron DEtection in radioactive beam
 - HELIOS superconducting magnet for charged particle detection
 - PARIS (Photon Array for studies with Radioactive Ion and Stable beams)
 - GASPARD (GAmma Spectroscopy and PArticle Detection)
 - Neutron detectors
- Magnetic spectrometer or separator for channel selection
- Storage Ring
- Special requirements
 - Time of Flight detection => buncher + chopper
 - Slow EBIS extraction
 - ✤ Beam spot

Mark Huyse, IKS K.U. Leuven ISOLDE workshop 8/12/2010

Short term perspectives

- 2011 campaign
- Coulex experiments: ^{188;..,198}Pb, ¹⁴⁰Nd, ⁹⁶Kr, ²²⁰Rn, ²⁰⁸Rn, ¹²⁸Cd, ⁷²Kr, ³⁰Na, ⁹⁸Sr
- transfer experiments
- g-factor measurements

Discussion of physics campaign during CERN shut down period MINIBALL workshop University of Cologne 27.-28. February or March 5.-6. March 2012.

- 2012 campaign
- 2013 CERN shut down

Summary

- MINIBALL spectrometer perfectly suited for REX-ISOLDE
- Physics case covers nuclei in the range from ¹⁷F to ²²⁴Ra
- First years: Shell model physics and Coulomb excitation
- Recent developments:
 - heavy beams
 - T-REX transfer reactions & γ-ray spectroscopy
- Major perspective: HIE-ISOLDE

