Pulse Shape Analysis With the AGATA DEMONSTRATOR

0

Bart Bruyneel - CEA Saclay For the AGATA collaboration Egan workshop, Padua June 2011

()

FAIR New Facilities, New challenges

SPIRAL2 - HIE-ISOLDE - EURISOL - ECOS

Relativistic exotic beams .

- Low beam intensity
- High backgrounds
- Large Doppler broadening
- High y-ray multiplicities
- High counting rates

...Need :

- High efficiency
- High sensitivity
- High position resolution
- •High Peak/Total
- High throughput

The idea of γ-ray tracking

Compton Shielded Ge

large opening angle means poor energy resolution at high recoil velocity.

Previously scattered gammas were wasted. Technology is available now to track them.

Ge Tracking Array

Combination of:

segmented detectors
digital electronics
pulse processing
tracking the γ-rays

AGATA / GRETA

Ingredients of Gamma-Ray Tracking

Asymmetric AGATA Tripel Cryostat

-integration of 111 high resolution spectroscopy channels -cold FET technology for all signals

- A. Wiens et al. NIM A 618 (2010) 223–233
- D. Lersch et al. NIM A 640(2011) 133–138

Challenges: -mechanical precision -microphonics -noise, high frequencies -LN2 consumption

Performance: Energy resolution

Performance: Crosstalk

- No crosstalk observed between detectors
- Within one detector, the theoretical crosstalk limit is reached
- Online cross talk correction implemented

B. Bruyneel et al., NIM A 599 (2009) 196

On line Cross Talk Correction

How to simulate HPGe detector signals

Digital proc. electronics

Digitisers in the experimental hall

10 m long MDR cables

Computer farm

AGATA online

1st experiment with AGATA (18/02/10)

- < 5mm FWHM resolution obtained
- psa online at rates > 5kHz per crystal

AGATA online result

Position Resolution of AGATA

	FWHM	Method
time	5.2mm	Doppler correction meas.
	4.0mm	Doppler correction meas
	3.5mm	511keV source meas.

Reference

- F. Recchia et al. NIM A (2009)
- P.-A. Söderström et al. NIM A (2011)
- S. Klupp, M.Schlarb, R. Gernhauser, (in prep.)

Resolutions improve over time by improvement on PSA libraries

PSA calibration using 511keV source:

Impurity from C-V measurements

Results with the cylindrical approximation

Birkenbach et al. NIM A 640 (2011) 176-184

A

В

C: HV = 10V

D: HV = 100V

Depletion of a HPGe detector Using ADL 3.0

- A: Bare HPGe germanium crystal symmetric AGATA detector
- B: Geometry in simulation The HV contact is colored yellow

C-G: Undepleted volume as function of HV.

(assumption: 10¹⁰ impurities / cm³)

F: HV = 2kV

G: HV = 3kV

Bruyneel et al. NIM A 641 (2011) 92–100

Bruyneel et al. NIM A 641 (2011) 92–100

Det. 1B - Shape of the 1332 keV line

White: April 2010 \rightarrow FWHM(core) ~ **2.3 keV** FWHM(segments) ~**2.0 keV** Green: July 2010 \rightarrow FWHM(core) ~**2.4 keV** FWHM(segments) ~**2.8 keV** Damage after 3 high-rate experiments (3 weeks of beam at 30-80 kHz singles)

Crystal 1B (COO2)

April 2010

The 1332 keV peak as a function of crystal depth (z) for interactions at r = 15mm

The charge loss due to neutron damage is proportional to the path length to the electrodes. This is provided by the PSA, which is barely affected by the amplitude loss.

Knowing the interaction position,

the charge trapping can be calculated and corrected away

July 2010

The 1332 keV peak as a function of crystal depth (z) for interactions at r = 15mm (worst case !)

Correction of neutron damage

Correction of neutron damage

Conclusion

AGATA Demonstrator + PRISMA (Legnaro National Lab, Italy) installation started mid 2008, completed mid 2009

- Detectors brought to optimal performance using digital electronics
- PSA resolution alows tracking, and still improves in time
- Demonstrator = 5ATCs in operation at LNL
- First experiments performed succesfully: → see thursday

OUTLOOK: Plans for the next few years

LNL: 2010-2011 5 TC Total Eff. ~6%

GSI: 2012-2013 ≥ 8 TC Total Eff. > 10%

GANIL: 2014-2015 15 TC Total Eff. > 20%

AGATA D. + PRISMA

AGATA + FRS

AGATA + VAMOS

Trapping cross sections

Cross sections are field

L. Reggiani – Rev. del Nuovo Cimento 12 nr 11 (1989)

Most popular is model by Lax: Cross sections are **velocity** dependent

Trapping cross section: neutron damage specific

L. S. Darken et al. NIM 171 (1980)

Specific model for fast neutron induced Frenkel pair ň Primary knock on atom Defect Vacancy cluster Transport of energy **↓** ~ 200Å by focusing impact <100: Interstitial atoms Damaged zone

Cross section from field line disturbance:

Balance between E field and Coulomb force:

Assumptions:

- Trapping only by disordered regionsMacroscopic model: drift velocity!
- Q ~ 100e equilibrium charge state
- r_{max} ~ 2 μm cross section (E=2kV/cm)
- $I_e \sim 0.2 \; \mu m \,$ dist. betw. optical phonon emission

Some theory: collection efficiency

•Trapping rate of electrons / holes "q":

$$\frac{dq}{dt} = - \langle \sigma v \rangle N_t q \quad \Leftrightarrow \quad q(t) = q_0 \cdot e^{-\int_0^t \langle \sigma v \rangle N_t dt'}$$

- $\sigma\,$: trapping cross section
- v : microscopic velocity
- <.>: average over ensemble
- Nt : density of trapping centers

•Collection efficiency (position dependent) of electrons / holes for electrode "i":

$$\eta_{e,h}^{i}(\vec{x}_{0}) = -\int_{0}^{t_{e}} \left(\vec{\nabla}\phi_{i}\cdot\vec{v}_{e,h}\right)\cdot\frac{q(t)}{q_{0}}dt$$

Integral [current to seg i per unit charge]total recorded charge by e/h after collection

- \mathbf{x}_{0} : interaction position in detector
- \mathbf{p}_i : weighting potential of segment i
- $v_{e,h}$: drift velocity of electrons / holes
- r_e : collection time

•Total collection efficiency for electrode "i" at position x_0 :

$$\eta_{tot}^{i}(\vec{x}_{0}) = \eta_{e}^{i}(\vec{x}_{0}) + \eta_{h}^{i}(\vec{x}_{0})$$

$$\checkmark \qquad \checkmark$$

$$\simeq \phi_{i}(\vec{x}_{0}) + [1 - \phi_{i}(\vec{x}_{0})] \cong 1$$

Partial collection efficiencies mainly report on weighting potential

Trapping sensitivity*

(*personal definition - don't google!)

•DEFINITION: electron / hole sensitivity of electrode i to trapping

$$s_{e,h}^i = \frac{d\eta_{e,h}^i}{dN_t} \mid_{N_t=0}$$

= fraction missing due to trapping+ induced charge due to trail of trapped charges

•Relation to total collection efficiency:

$$\eta_{tot}^{i}(\vec{x}_{0}) = 1 + \left[N_{e} s_{e}^{i}(\vec{x}_{0}) + N_{h} s_{h}^{i}(\vec{x}_{0}) \right] + O(2)$$

Ne : density of electron traps, Nh: density of hole traps
O(2) – higher order terms in taylor expansion - negligible
sensitivities can be calculated in advance
Ne, Nh are fit parameters

Sensitivity $s_{e,h}^i$

Trapping in <u>new</u> detectors

Electron trapping present in any detectorSource of scattering on Fano factors

Correction of neutron damage

$$\eta_{tot}^{i}(\vec{x}_{0}) = 1 + \left[N_{e} s_{e}^{i}(\vec{x}_{0}) + N_{h} s_{h}^{i}(\vec{x}_{0}) \right]$$

Digitizers:

- One module per crystal: 36 segment channels + dual core (high + low gain)
- 100Ms/s, 14 bit, all running on the same clock
- Synchronous readout to digital electronics of all samples (7.6GB/s/crystal)

Digital processing electronics:

- 2 ATCA carriers per crystal: 4-slot carrier boards and processing mezzanines
- Local trigger on the core signal
- Trapezoidal shaping with baseline restoration
- Trace capture (100 samples/channel = 10 kB/event/crystal)

Data processing farm:

- 1 pizza-box per crystal: Readout / Pre-processing / PSA (< 4.5 kEvt/s) (Pre-processing = gain matching, time alignment, Xtalk correction,...)
- 10 pizza-boxes: Event Builder / Online tracking, analysis & storage
- 120 TB of storage + Archiving on Grid T1

Digitisers in the experimental hall

m long MDR cables

2

Digital proc. electronics in the users area

Computer farm in the computing room

disk serve

to the

Global Triggering System (GTS):

- Provides a 100 MHz clock and a 48 bit timestamp
- Collects local triggers, determines global trigger
- Returns validation/rejection

Mobilities : Intro

•Monocrystalline Ge •Periodic potential U Bloch electrons: $\Psi_{n,\vec{k}}(\vec{r}), \varepsilon_{n,\vec{k}}$ •Wave vector K in first Brillouin zone •Band index n

•Velocity:

$$\vec{\mathbf{v}}_{n,\vec{k}} = \frac{1}{\hbar} \vec{\nabla}_{\vec{k}} \boldsymbol{\varepsilon}_n(\vec{k})$$

- •Longitudinal anisotropy |v_r| angle dependent
- Tangential anisotropy

Electron and Hole Mobility in Ge

-Phys.Rev. 130(6):2201-2204,1963

-distributed over 4 ellipsoidal valleys

-each valley is MB distributed, T(E)

-intervalley scattering v(E) defines valley population

 $-v_{100}(E)$ and v(E) defines all.

-B. Bruyneel et al. NIM A 569 (2006) 764-773-:

-only "warped" heavy hole band is important

-"Streaming motion" \rightarrow drifted MB distribution:

 $f(\vec{k}) \propto \exp\left(-\hbar^2(\vec{k}-\vec{k}_0)^2/2mk_bT_e\right)$ $\vec{v}_d \propto \int \mathbf{v}(\vec{k})f(\vec{k})d\vec{k}$

- $v_{100}(E)$ and $v_{111}(E)$ defines all.

The anisotropic Hole mobility model

Anisotropy: Longitudinal

Tangential

Example: hole trajectories

•Electrons v_r mainly slower near [111], Holes v_r mainly faster near [100]

•Tangential components 0 along symmetry axes and largest near same directions of largest v_r differences

AGATA: analog electronics

Core preamp + pulser : (G. Pascovici, IKP Cologne)

Segment preams (3channel): Milano, Ganil:

Requirement core preamp:

- ·low noise (energy + PSA)
- ·large bandwidth (PSA -> 30ns rise time)
- •Wide dynamic range:
 - + dual gain: 5MeV + 20MeV
 - + desaturation circuitry (throughput x4)

Sifferential OU

+ TOT technique (~200MeV)

G. Pascovici et al. WSEAS trans. on circuits and systems (2008) Iss.6 Vol.7 p.470

Mixed reset technique: continuous + pulsed

An ADC overflow condition would saturate the system for a long while

²⁴¹Am+Be spectrum

__``reset" mode (by TOT technique)

Energy	Resolution (fwhm) in pulse-height mode		Resolution (fwhm) in <u>reset mode</u>	
5.6 MeV	10.5 keV	0.14 %	18.8 keV	0.34 %
6.1 MeV	15.1 keV	0.17 %	17.1 keV	0.28 %
7.6 MeV	11 keV	0.14 %	18.8 keV	0.25 %
9.0 MeV	15 keV	0.17 %	18.9 keV	0.21 %

At high energies (> 10 MeV)

TOT mode ~ pulse-height mode

—"pulse-height" mode

Performance: Cross talk

- Crosstalk is present in <u>any</u> segmented detector
- Creates strong energy shifts proportional to fold
- Tracking needs segment energies !

Origin of Crosstalk

!!! Proportional and Differential Xtalk are related **!!!**

Proportional Xtalk measurement

Segment labeling:

(Design and characteristics)

	Main featu	ires of <i>i</i>	AGATA
Efficiency: today's arrays	<mark>43% (Μ</mark> γ ~10% (gain ~	<mark>=1) 28%</mark> -4) 5%	<mark>(Μ_γ =30) (gain ~1000)</mark>
Peak/Total	: 58% (<mark>Μ</mark> _ν =	:1) 49%	(M _v =30)
today	~55%	40%	'
Angular Re	solution: ~	$1^{\circ} \rightarrow$	
FWHM (1 N	leV, v/c=5	50%) ~ 6	keV !!!
today		~ 40) keV
Rates: 3 M	Hz (Μ _γ =1)	300 kHz	(M _v = 30)
todav 1 Mł	اz	20 kHz	

- Digital electronics and sophisticated Pulse Shape Analysis algorithms allow
- Operation of Ge detectors in position sensitive mode $\rightarrow \gamma$ -ray tracking

Experiments performed

- Coulomb Excitation of the Presumably Super-Deformed Band in ⁴²Ca (A.Maj, F.Azaiez, P.Napiórkowski)
- Precision lifetime study in the neutron-rich N=84 isotone ¹⁴⁰Ba from DSAM measurements following Coulomb-barrier alpha-transfer reactions on a ¹³⁶Xe beam (J.Leske)
- Neutron-rich nuclei in the vicinity of ²⁰⁸Pb (Zs.Podolyák)
- Inelastic scattering as a tool to search for highly excited states up to the region of the Giant Quadrupole Resonance (R.Nicolini)
- Lifetime measurements of the neutron-rich Cr isotopes (J.J.Valiente-Dobón)
- Lifetime measurement in neutron-rich Ni, Cu and Zn isotopes (E.Sahin, M.Doncel, A.Görgen)
- Lifetime measurement of the 6.792MeV state in ¹⁵O (R.Menegazzo)
- Order-to-chaos transition in warm rotating ¹⁷⁴W nuclei (V.Vandone)

Performance: Fourier Spectrum

- Clean FFT spectra up and beyond the Nyquist frequency
- Low susceptibility to pickup noise (e.g. digital noise)

PSA Codes within AGATA

The classical PSA scheme consists of 3 components:

- Figure of Merrit (FOM) e.g. $\sum_{i \in ROI} (event1_i event2_i)^n$ (n=0.3) A. Grid search:
- Search Routine : optimization of FOM over library
- implemented
- Adaptive Grid Search (A. Venturelli)
- Particle Swarm Optimization (M. Schlarb, TU Munich)
- Decomposition strategy for multiple interactions:
 - assuming maximum 1 hit per segment
 - segments influenced by multiple hits excluded

Correction for trapping

Neutron damaged detector:							
2 parameter fit describes							
	FWHM 1.3MeV	<u>FWHM</u> FWTM					
Corrected: Uncorrected:	2.06 2.44	1.91 1.83					

