Gamma calorimeters for experimental studies relevant to explosive nucleosynthesis

Sotirios V. Harissopulos

LIBRA / Tandem Accelerator Laboratory, NCSR "Demokritos", Athens, GR sharisop@inp.demokritos.gr

Tandem Accelerator Lab., NCSR "Demokritos"- Athens P. Demetriou, A. Lagoyannis, M. Axiotis, A. Spyrou, S. Galanopoulos, P. Tsagari, V. Foteinou, G. Provatas and T. Konstantinopoulos

EP3-Bochum H.W. Becker, C. Rolfs

IfS-Stuttgart M. Fey, R. Kunz, J.W. Hammer

IKP-Köln A. Zilges, A. Dewald, K.O. Zell, P. von Brentano and the MINIBALL Collaboration GANIL :

F. de Oliveira and P. Ujic

JYFL-Jyväskylä R. Julin. P. Jones, T. Sajavara, H. Koivisto

IAA-ULB S. Goriely nuclear parameters relevant to astrophysics

Ground state properties (masses, ...)

nuclear structure

parameters (NLD, branchings, lifetimes, ...) cross sections

resonance parameters

Capture reactions Photodisintegrations $(x,n) - (x,p) - (x,\alpha)$ [x=p, α ,d] Fusion: C+C, O+O,C+O Fission

	OFF – BEAM activation measurements	IN–BEAM γ-angular distribution measurements
reaction to study	final nucleus must be unstable	any
target	enriched or natural	enriched
backing	lf, then low-Z (C, Al, …)	lf, then high-Z (Ta, Au, …)
detectors	normal size HPGe (ε≈30%)	large-volume HPGe (arrays) (ε≥70%)
γ rays to detect	in most cases E _γ ≤ 2 MeV	up to E _γ ≈ 15 MeV

⁹³Nb(p,γ)⁹⁴Mo

⁸⁹Y(p, γ)⁹⁰Zr : γ – angular distribution measurements

S. Harissopulos: EGAN 2011 Workshop, Padova, 27-30 June 2011

⁸⁹Y(p, γ)⁹⁰Zr : γ – angular distribution measurements

γ – angular distribution measurements @ IfS Stuttgart

	OFF – BEAM activation measurements	IN–BEAM γ-angular distribution measurements	IN–BEAM angle-integrated measurements
reaction to study	final nucleus must be unstable	any	any
target	enriched or natural	enriched	enriched
backing	lf, then low-Z (C, Al,)	lf, then high-Z (Ta, Au, …)	If, then depends on the Q-value !
detectors	normal size HPGe (ε≈30%)	large-volume HPGe (arrays) (ε≥70%)	4π calorimeters [large Nal(Tl)] (ε≈100%)
γ rays to detect	in most cases E _γ ≤ 2 MeV	up to E _γ ≈15 MeV	up to E _γ ≈25 MeV

The $4\pi \gamma$ – summing method

The $4\pi \gamma$ – summing method

⁸⁹Y(p, γ)⁹⁰Zr cross sections using the $4\pi \gamma$ – summing method

S. Harissopulos: EGAN 2011 Workshop, Padova, 27-30 June 2011

and the second second

typical angle-integrated spectra

S. Harissopulos: EGAN 2011 Workshop, Padova, 27-30 June 2011

MINIBALL: typical (p, γ) and (α , γ) singles spectra

(α, γ) reactions : comparison with HF predictions

Solid line : cross sections predicted by the DG² alpha-OMP-III

by P. Demetriou, C. Grama, and S. Goriely, Nucl. Phys. A 707, 253, 2002

p-nuclei solar abundances

