

Lifetime measurement of the 6.792 MeV state in ¹⁵O with the AGATA Demonstrator

R. Depalo¹, C. Michelagnoli^{2,3}, R. Menegazzo², C. A. Ur², D. Bazzacco², D.Bemmerer⁴, C. Broggini², A. Caciolli^{2,5}, M. Erhard⁴, E. Farnea², F. Filmer⁶, Zs. Fülöp⁷, A. Gottardo¹, R. S. Kempley⁸, M. Marta⁴, R. McAdoo¹, D. Mengoni^{2,3}, T. Mijatović⁹, G. Pollarolo¹⁰, F. Recchia², C. Rossi Alvarez², E. Sahin¹, T. Szücs⁹, J.J. Valiente-Dobon¹, N. Keeley¹⁰ the AGATA collaboration

¹ INFN, Sezione di Legnaro, Legnaro (Padova), Italy. ² INFN, Sezione di Padova, Padova, Italy.
³ Dipartimento di Fisica dell'Universit` di Padova, Padova, Italy.
⁴ Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
⁵ CGT, San Giovanni Valdarno and University of Siena. ⁶ University of Liverpool, Liverpool, UK.
⁷ ATOMKI, Debrecen, Hungary. ⁸ Department of Physics of the University of Surrey, Guildford, UK.
⁹ Ruder Bo` kovi´ Institute, Zagreb, Croatia. ¹⁰ INFN and Universit` di Torino, Torino, Italy.
¹⁰Department of Nuclear Reactions, The Andrzej Sołtan Institute for Nuclear Studies, Warsaw, Poland

The solar composition problem

Recent determination of solar abundances, based on new 3D solar atmosphere models, imply a 30% decrease in Z/X: from 0.0229 (Grevesse & Sauval, 1998) to 0.0165 (Asplund, Grevesse & Sauval, 2005)

- Sound speed and density profile in disagreement with helioseismological measurements
- Central temperature lowered by 1.2% => 21% decrease in ⁸B v flux
- > Smaller temperature gradient \Rightarrow R_{cz}/R_{*} from 0.713 to 0.728
- Age of globular clusters increased by 5 10%

40% decrease in CNO v flux (E < 2MeV)

The solar composition problem

CNO neutrinos provide an independent evaluation of C and N abundances in the solar core...BUT...CNO reactions cross sections should be accurately known!

The ¹⁴N(p,γ)¹⁵O reaction is the slowest one, thus determining the overall rate

When extrapolating the cross section to the Gamow peak energy window (~30 keV), sub-threshold resonances corresponding to bound states in ¹⁵O have to be taken into account

The ¹⁴N(p,γ)¹⁵O cross section is determinated largely by the transition to the 6.79 MeV (3/2⁺) state in ¹⁵O (now measured down to 70 keV)

Lifetime of the 6.79 MeV state

Group	Method	$ au_{\gamma}^{6.792}$ [fs]		
Oxford 1968 W.Gill et al., Nucl. Phys. A 121. 209	DSAM d(14N, 150)n	< 28		
TUNL 2001 P.F. Bertone et al., Phys. Rev. Lett. 87, 152501	DSAM ¹⁴ N(p,γ) ¹⁵ O	1.6±0.7 (44%)		
RIKEN 2004 K. Yamada et al., Phys. Lett. B 579, 265	CE ²⁰⁸ Pb(¹⁵ O, ¹⁵ O*)	0.69±0.43 (62%)		
LUNA 2004 A. Formicola et al., Phys. Lett. B 591, 61	Cross section + R-matrix fit	1.1±0.5 (45%)		
TUNL 2005 R. Runkle et al., Phys. Rev. Let. 94, 082503	Cross section + R-matrix fit	0.3±0.1 (33%)		
Bochum 2008 D. Schürmann et al., Phys. Rev. C 77, 055803	DSAM ¹⁴ N(p,γ) ¹⁵ O	< 0.77		
LUNA 2008 M. Marta et al., Phys. Rev. C 78, 022802(R)	Cross section + R-matrix fit	0.75±0.20 (27%)		

The uncertainity on the resonance width is still too high!

Lifetime of the 6.79 MeV state

Gro	oup	Method	$\tau_{\gamma}^{6.792}$ [fs]	The uncertainity		
Oxford 1968 W.Gill et al., Nucl. Phys.	A 121. 209	DSAM d(¹⁴ N, ¹⁵ 0)n	< 28	on the resonance width is still		
TUNL 2001 P.F. Bertone et al., Phys.	Rev. Lett. 87, 152501	DSAM ¹⁴ N(p,γ) ¹⁵ O	1.6±0.7 (44%)	too high!		
RIKEN 2004 K. Yamada et al., Phys. L	.ett. B 579, 265	CE ²⁰⁸ Pb(¹⁵ O, ¹⁵ O*)	0.69±0.43 (62%)	Measurement of the lifetime of the 6.79		
LUNA 2004 A. Formicola et al., Phys.	. Lett. B 591, 61	Cross section + R-matrix fit	1.1±0.5 (45%)	MeV state in ¹⁵ O with		
TUNL 2005 R. Runkle et al., Phys. Re	ev. Let. 94, 082503	Cross section + R-matrix fit	0.3±0.1 (33%)	AGATA Demonstrator		
Bochum 2008 D. Schürmann et al., Phy	vs. Rev. C 77, 055803	DSAM ¹⁴ N(p,γ) ¹⁵ O	< 0.77	Reaction ² H(¹⁴ N,n) ¹⁵ O (Q = 5.072 MeV) in		
LUNA 2008 M. Marta et al., Phys. Re	v. C 78, 022802(R)	Cross section + R-matrix fit	0.75±0.20 (27%)	inverse kinematics		
²⁴⁰ 162 deg		— 0 fs		E _x [keV]		
200 -				9484 3/2 +		
ی 160 -		keV baric.	_	8284 3/2+		
5 120 -				7276 6859 6792		
80 -		-	5072.5	6172 5241 5181 5181		
40			¹⁴ N+d-n			
6350 6360 63	70 6380 6390 640 E[keV]	0 6410		¹⁵ O 4		

Experimental setup

Reaction ²H(¹⁴N,n)¹⁵O @ 32 MeV Tandem XTU terminal voltage 8.95 MV

I(¹⁴N³⁺) ~ 4 - 5 pnA

- ²H implanted in a thin surface layer of a 4mg/cm² Au target
- AGATA Demonstrator (4ATC's) at backward angles

Experimental setup

Reaction ²H(¹⁴N,n)¹⁵O @ 32 MeV Tandem XTU terminal voltage 8.95 MV

I(¹⁴N³⁺) ~ 4 - 5 pnA

- > ²H implanted in a thin surface layer of a 4mg/cm² Au target
- AGATA Demonstrator (4ATC's) at backward angles

$$\beta$$
(¹⁵O) ~ 6.5 % ; E₀ = 6791.4 keV

$$E(\vartheta) = E_{\theta} \frac{\sqrt{1-\beta^2}}{1-\beta \cos \vartheta} = 6384 \text{ keV}$$

low gain of the electronics (20 MeV dynam. range)

R

G

В

(~60 cm below the reaction chamber)

Data analysis: data processing

Energy calibration of CC and segments with high energy gammas

 Non linearity of segments signals in the low gain range

old tracking

15_N

7200

new tracking

7400

Tracking performed forcing the sum of the energy releases of the tracked points to be equal to the corresponding energy seen in the CC

Data analysis

The angular range can be splitted into 2° slices according to the angle of the first interaction point (identified by the tracking algorithm)

Data analysis: simulations

Line shape analysis is performed comparing experimental spectra with detailed simulations of the reaction mechanism and the gamma emission and detection

Differential cross sections are needed to reproduce the line shape

9

8312 keV (¹⁵N), nucleon transfer (CDCC), τ = 1.73 fs

8312 keV (¹⁵N), nucleon transfer (CDCC), τ = 1.73 fs

8312 keV (¹⁵N), nucleon transfer + 20% fusion - evaporation ($E_p = 2MeV, \sigma_p = 1.5MeV$)

6791 keV (¹⁵O), nucleon transfer (CDCC), $\tau = 1$ fs

11

6791 keV (¹⁵O), nucleon transfer (CDCC), τ = 5 fs

Conclusions

\rightarrow The high energy and angular resolution of the AD make the line shape sensitive to fs lifetimes

- → Lower upperlimit in the lifetime of the level of interest (~fs) with respect to what was obtained in the past with the same technique (Gill et al., NPA 121 (1968) 209).
- \rightarrow The complex kinematics of the ²H(¹⁴N,n)¹⁵O reaction limits the line shape sensitivity at sub-fs lifetimes

Future work:

- → Theoretical estimation of the fusion evaporation cross section
- $\rightarrow \chi^2$ test to quantify the line shape sensitivity to the lifetime
- → Run again data processing in order to recover the signal of damaged segments (spectra will not change significantly)

SUPPLEMENTARY SLIDES

3D Solar atmosphere model

New 3D solar atmosphere models:

- \rightarrow essentially parameters free
- \rightarrow better fit of absorbition lines
- → agreement with local intersetellar medium composition

The Astrophysical Journal, 618:1049 –1056, 2005

0.015

0.010

0.005

0.000

_0.005 0.0

Sc/c

Sukyoung K. Yi and Yong -Cheol Kim Journal of The Korean Astronomical Society 43: 135 ~ 139, 2010

Neutrino flux

C, N β_j					
Source	\mathbf{C}	Ν	0		
$\phi(^{8}B)$	0.027	0.001	0.107		
$\phi(^{13}N)$	0.874	0.142	0.044		
$\phi(^{13}N)/\phi(^{8}B)^{0.599}$	0.858	0.141	-0.020		
$\phi(^{15}O)$	0.827	0.200	0.071		
$\phi(^{15}\text{O})/\phi(^{8}\text{B})^{0.828}$	0.805	0.199	-0.018		

	Environmental β_j			Nuclear β_j						
Source	L_{\odot}	Opacity	Age	Diffusion	S_{11}	S_{33}	S_{34}	S_{17}	S_{e7}	S_{114}
$\phi(^{8}B)$	7.16	2.70	1.38	0.28	-2.73	-0.43	0.85	1.0	-1.0	-0.020
$\phi(^{13}N)$	4.40	1.43	0.86	0.34	-2.09	0.025	-0.053	0.0	0.0	0.71
$\phi(^{13}N)/\phi(^{8}B)^{0.599}$	0.11	-0.19	0.03	0.17	-0.45	0.28	-0.56	-0.60	0.60	0.72
$\phi(^{15}O)$	6.00	2.06	1.34	0.39	-2.95	0.018	-0.041	0.0	0.0	1.00
$\phi(^{15}\text{O})/\phi(^{8}\text{B})^{0.828}$	0.07	-0.18	0.20	0.16	-0.69	0.37	-0.74	-0.83	0.83	1.02

S_{14.1} cross section

Data analysis

Pair production spectrum (sum of all angles)

Energy resolution would maybe be better but statistics is poor

Gamma - gamma

6791 keV (¹⁵O) CDCC τ = 0.5fs

6791 keV (150) CDCC τ = 2fs

6791 keV (¹⁵O), nucleon transfer + 20% fusion - evaporation, τ = 5 fs (E_n = 2MeV, σ_n = 1.5MeV)

8310 keV differential cross section

Beaumevieille et al. NPA125 (1969) 568-584

ERDA and RBS target analysis

Data analysis: data processing

Energy calibration of CC and segments with high energy gammas

- Off-line refinement was needed to align the CC spectra
- Non linearity of segments signals in the low gain range
- PSA provides (E, x, y, z, t) of the interaction points for each crystal

Tracking (at global level) provides the position of the first interaction point.

• Performed forcing the sum of the energy releases of the tracked points to be equal to the corresponding energy seen in the CC

Crystals 1R and 2R excluded from the analysis for 65% of the experiment because of desynchronization