Exploring exotic nuclei via transition probabilities using the plunger technique

A. Dewald, University of Cologne

Outline:

- Plunger activities
- Plunger for deep inelastic reactions
- Plunger with radioactive beams
- ⁶⁶Fe at N=40
- New developments
- RDDS data analysis
- Target issues
- Summary

List of recent plunger measurements with the Cologne plunger group

I	ndex .	lahr Monat	Spokesperson	Institut	: Kern	Reaktion
	1	2008 March	Iwasaki	Köln	13B	7Li,p
	2	Oct	Korten	GANIL	62,64Fe	deep inelastic
	2	Oct	Dowald	I NI	18000	Eucion Evanoration GASP
	1	Nov	Joss Grahn		175 \	Euclon Evaporation Jurgam PITU
	4	Doc	Harissonulos		170Ku	Coulor
	5	2000 Feb			200	coulex
	0 -7	ZUUSPED		NCCI	200	
		Feb	Aurich	NSCL	78NI	
		Feb	Clark	NSCL	100	
		Feb	Adrich	NSCL		
	10	Mar	Dewald	NSCL	62,64,66Fe	Intermediate Coulex
	11	Iviai	Gladnishki	KOIN	140Nd	Fusion Evaporatation
	12	Oct	Moller, Franchoo	GANIL	73Cu	
	14	Juli	Mengoni	LNL	51,53V	Fusion Evaporation GASP
	15	Juli	Recchia, Gadea	LNL	112Te	Fusion Evaporation GASP
	16	Juli	Valiente-Dobon	LNL	Cr	AGATA+Prisma+Alpi Stattgefunden???
			Nara Sing,			
	17	2010 April	Wadsworth	ANL	68Se	
	18	April	Grahn, Scheck	ANL	184,186,188Hg	Fusion Evap
	19	June	Görgen	LNL	72,74Zn	Agata+Prisma
		Septembe	5			
	20	r	Clement, Ljungvall	Ganil		
		Septembe	e Görgen, Sahin,			
	21	r	Doncel	Ganil	68,70,72Ni	tiefinealstisch, 238U + 70Zn> 68,70,72Ni
	22	Oktober	Fransen	Jyv	86Kr	inverse Coulex, 40Ca(86Kr, 86Kr*)40Ca*
	23	Oktober	Konstantinopoulos	Jyv	130Xe	inverse Coulex, Fe(130Xe, 130Xe*)Fe*
		Novembe				
	24	r	Grahn	Jyv	182Pt	Compound, 154Sm(32S,4n)182Pt
		Novembe				
	25	r	Joss	Jyv	163,164W	Compound 106Cd(60Ni,2pn)163W
	26	Nov/Dez	Cederwall	Jyv	108,110,112Te	54Fe(58Ni,2p2n)108Te, 54Fe(58Ni,2p)110Te, 56Fe(58Ni,2p)112Te
	27	Dez	Cullen	Jyv	138Gd	Compound, 108Cd(36Ar,2p2n)138Gd
	28	2011 April	Görgen	Ganil	insb. Ru,Pd Isotope	Fusion-Fragmentation 9Be(238U,-)-
	29	May	Fransen	GSI	54Cr	Coulomb Excitation
	30	Juni	Chapman	LNL	34Si,35P, 36S	36S(208Pb,-)-
	31	July	Gadea	LNL	136Xe	

Cologne Plunger

γγ Coincidence Plunger

GASP

high precision: $\Delta \tau < 3\%$

EUROBALL

Plunger with an array of photo-diodes @ JYFL / Jyväskylä

A new Recoil Distance Technique using low energy Coulomb Excitation in Inverse Kinematics W. Rother et al., NIM A, in press

Towards exotic nuclei

Plunger with DEEP INELASTIC REACTIONS

Plunger with deep inelastic reactions @ Legnaro

CLARA - PRISMA

AGATA - PRISMA

Lifetime Measurements of the Neutron-Rich N = 30 Isotones ⁵⁰Ca and ⁵¹Sc: Orbital Dependence of Effective Charges in the fp Shell J.J. Valiente-Dobon et al. **Phys.Rev.Lett. 102, 242502 (2009)**

Lifetime measurements of excited states in neutron-rich ^{44, 46}Ar populated via a multinucleon transfer reaction D. Mengoni et al. **Phys.Rev. C 82, 024308 (2010)**

Plunger + VAMOS @ GANIL

J.Ljungvall et al., PRC81(2010)061301(R)

⁶⁴Fe : 2⁺ →0⁺

66Fe at N=40

^{62,64,66}Fe (2⁺) lifetime measurement at NSCL

NSCL coupled cyclotron facility + A1900; MSU

RDDS applied to projectile (^{62,64,66}Fe) Coulomb excitation reactions at intermediate energies (88-98 AMeV)

Köln/NSCL plunger

target/ degrader diameter: 4 cm target/ degrader separations: 0-2,5 cm precision : ~ 1 μ m target/ degrader thickness: ~1 μ m -1mm

SeGA @ S800

7 detectors

at forward angles (30 deg.)

8 detectors

at backward angles (140deg.)

Line-shape analysis for lifetime determination

Lifetimes are obtained by simultaneous fits to data taken at different (5-7) target-degrader distances.

mean lifetime of the 2⁺ states

⁶²Fe 8.0(10) ps
⁶⁴Fe 10.3(10)ps
⁶⁶Fe 39.4(40)ps

W.Rother et al., Phys. Rev. Lett. 106 (2011) 022502

^{62,64}Fe data agree with GANIL data J.Ljungvall et al., PRC81(2010)061301(R)

Valence Proton Symmetry

Energies of 2⁺₁ states

E (keV)

Neutron Number N

Valence Proton Symmetry (VPS)

VPS-pairs:

B(E2;0 $^+$ \rightarrow 2 $^+$) values of VPS pairs

The isotonic symmetry in E(2⁺)

Symmetry with respect to $Z \approx 30$

generalized scheme of Valence Proton Symmetry

VPS correlates

a pair of isotones that have the same number of valence protons and holes with respect to closed shells (same valence space results in similar collectivity)

VPS with respect to $Z \approx 30$ (protons in 1f5/2, holes in 1f7/2)

Comparison with shell model in the *fpgd* space

S.M.Lenzi, F.Nowacki, A.Poves, K.Sieja, PRC 82(2010) 054301

Recent shell model calculations PRC 8 with new effective LNPS interaction well explain the trends of B(E2) for ^{62,64,66}Fe at N=40

New Developments

The Differential Plunger

A. Dewald et al., Z.Phys. A334,1989

Characteristic features

- 3 peak plunger ... improve efficiencies in plunger measurements with slow, fast RI beams

d.

___Εγ [keV]

260

240

200

220

280

- Target-degrader- "stripper" configuration ... reduce beam background (different *Q*) improve collection efficiencies of reaction products

Differential (Double) plunger

Plunger @ GSI

New plunger for PRESPEC/HISPEC

Construction: S. Thiel, IKP, Cologne

Already built and mechanically tested:

•Precision of about 0.1 mm (further improvement possible)

•Construction designed for use with feedback system.

Maximum driving range:30 mm (limited by inchworm)

Piezo motor (Piezo Instruments) **RDDS Data Analysis**

Lifetime determination from a lineshape analysis

Line shape important in cases of thick targets & short distances (transition between RDDS and DSAM)

- Stopping power fixed by using velocities measured after the target and after the degrader
- Relativistic effects were considered
- Parameter: degrader excitation (40%)
 width of the velocity distribution
- Free parameter: lifetime, normalisation factor

Simulation Tool for RDDS Measurements @NSCL with SEGA

P.Adrich et al., NIM A 598 (2009), 454

GEANT4 simulations of the AGATA Demonstrator coupled to PRISMA and the Cologne differential plunger: comparison with experimental data (1)

C. Michelangoli

experiment performed in week 23 2010 (courtesy of C.Louchart)

simulation of the ⁷⁶Ge channel simplification : ⁷⁶Ge projectil-like emitted at a fixed direction (grazing angle, 55°) monochromatic (417 MeV)

GEANT4 simulations of the AGATA Demonstrator coupled to PRISMA and the Cologne differential plunger: comparison with experimental data (2)

- The plunger technique is an important technique in nuclear structure physics.
- At the moment there are many on-going plunger activities at different places.
- The plunger method can me adapted to the needs imposed by specific nuclear reactions.
- Work has still to be invested in the simulation of spectra for specific setups.
- Target production and test methods have to be further developed.

- flat surface (small target-degrader/stopper separations <10μm)
- enriched material, metal foils, radioactive targets
- thin(0.5 mg/cm²)/thick(1-2 mm) targets
- small (1cm)/large (8cm) diameter
- avoid hot targets (cooling with He?)
- avoid carbon built-up (LN₂ baffle)
- test of mechanical properties by e-gun, ion beams prior to the experiment
- Need for absolute target-degrader/stopper separations?

Approved experiments @ NSCL MSU:

SP: A. Dewald (Köln); **Collaboration:** Sofia, GSI Darmstadt, MSU, Padova, Legnaro *"Recoil-distance lifetime measurement in neutron rich Fe isotopes using intermediate energy Coulomb excitation"*

SP: Roderick Clark(LBNL Berkeley); **Collaboration:** MSU, Köln, Legnaro, Kolkata, Bolpur, Goteborg *"Lifetime of the First Excited 2⁺ State in ¹⁶C"*

SP: P. Adrich (NSCL MSU); **Collaboration:** MSU, Köln *"Lifetime of the first excited 2⁺ state of ¹⁸C measured with the relativistic plunger method"*

Approved experiments @ GANIL:

SP: O. Möller (TU Darmstadt); **Collaboration:** Darmstadt, Orsay, Köln, GANIL, Legnaro, Bucharest, Sofia, Debrecen, Dubna

"Exploring single-particle and collective low-lying states in neutron rich nuclei towards 78-Ni with the plunger technique at GANIL: The case of ⁷³Cu"

SP: W. Korten (CEA Saclay); Collaboration: Saclay, Köln, GANIL, Legnaro, Padova, Cern-Isolde

"Shapes and collectivity in Neutron-Rich Nuclei around A=70 – Applying the Recoil-Distance Doppler-Shift Method to Deep-Inelastic Reactions."

Approved experiments @ Legnaro:

SP: D. Mengoni (Padova): **Collaboration:** Köln, Padova, Legnaro, Krakow, Milano, Firence, Valencia, Berlin *"Lifetime measurement around the doubly-magic*⁴⁸Ca nucleus" Collaborators (for ⁶²⁻⁶⁶Fe at N=40) IKP, University of Cologne <u>W.Rother</u>, A.Dewald, C.Fransen, M.Hackstein, J.Jolie, Th.Pissulla, K.O.Zell

Dipartimento di Fisica, INFN, Padova

S.M.Lenzi, C.A.Ur

Simon Fraser University, Canada

K.Starosta

NSCL, Michigan State University

H.Iwasaki, D.Bazin, T.Baugher, B.A.Brown, H.L.Crawford, A.Gade,

T.N.Ginter, T.Glasmacher, G.F.Gynyer, S.McDaniel, A.Ratkiewicz,

P.Voss, K.A.Walsh, D.Weisshaar

Yale University

University of Tennessee

G.Ilie

D.Miller

Institute for Nuclear Research and Nuclear Energy, Sofia

P.Petkov

Plunger @ GSI

About 10 h Beamtime We expect 700 good counts / peak (inner Ge - Ring) Target Position (different Target chamber)

Expected Lineshape

Analysis in progress...

Gamma-plunger measurement

TowardsGRETINA(improvement in position resolutions)FRIB(large beam range)

Comparison with shell model in the *fpgd* **space**

Symmetry with respect to $Z \approx 30$, and shell evolution at N=40

proton-neutron monopole tensor int.

v(1g9/2)

Recent shell model calculations with new effective LNPS interaction

S.M.Lenzi, F.Nowacki, A.Poves, K.Sieja, PRC 82(2010) 054301

well explain the trends of B(E2) for ^{62,64,66}Fe at N=40

