

### **Gamma-ray Spectroscopy Experiments at RIKEN**

Pieter Doornenbal ピーター ドルネンバル



### Outline

RI Beam Production at the RIBF

In-Beam Spectroscopy

Decay Spectroscopy

EURICA

Summary and Outlook

- RI beam production and separation at the RIBF
- In-beam  $\gamma$ -ray spectroscopy
  - ♦ <sup>38</sup>Mg
- Decay spectroscopy
  - $\beta \gamma$  spectroscopy of neutron-rich Zr-Isotopes
  - ♦ EURICA

# RI Beam Production at the RIBF

PD, Gamma-ray Spectroscopy Experiments at RIKEN

EGAN Workshop, June  $26^{th}$  – June  $30^{th}$ , 2011 - 4



### Superconducting Ring Cyclotron (SRC)



Intensities of 345 MeV/u beams from the SRC:

| Nucleus               | Bea<br>Achieved | m Intensity / pnA<br>Expected FY 2011/12 |
|-----------------------|-----------------|------------------------------------------|
| <sup>48</sup> Ca      | 230             | 200                                      |
| <sup>86</sup> Kr      | 30              | 30                                       |
| <sup>124,136</sup> Xe | (10)            | 10                                       |
| <sup>238</sup> U      | 0.8             | 5                                        |

- K = 2500 MeV
- 8300 tons
- 5.36 m extraction radius
- 6 sector magnets
- four main RF cavities

### **BigRIPS** Overview



### **ZeroDegree Spectrometer**



# **In-Beam Spectroscopy**

### DALI2

RI Beam Production at the RIBF

In-Beam Spectroscopy

#### DALI2

**♦** <sup>38</sup>Mg

Decay Spectroscopy

EURICA

Summary and Outlook

- 186 Nal(TI) detectors
- $\vartheta$  coverage 11° to 165°
- $\Delta E/E \approx$ 10(11) % (FWHM) at 100(250) MeV/u
- $\approx$  20% FEP efficiency at 1 MeV
- Thick targets, 2.54 g/cm<sup>2</sup> C, 2.13 g/cm<sup>2</sup> CH<sub>2</sub>, 3.37 g/cm<sup>2</sup> Pb
- S. Takeuchi et al., RIKEN Pr. Rep. 36, 148 (2003)





60

10 50

### In-Beam Gamma-Ray Spectroscopy of <sup>38</sup>Mg





# Decay Spectroscopy at the RIBF

PD, Gamma-ray Spectroscopy Experiments at RIKEN

### Location for Decay Spectroscopy





### **Onset of Large Deformation at** N = 60



### **Production of Neutron-Rich Zr Isotopes**



### $\beta$ -Delayed $\gamma$ -ray in <sup>106</sup>Zr



### Isomeric State in <sup>108</sup>Zr



### Systematics of Even-Even Nuclei



#### T. Sumikama *et al.*, PRL **106**, 202501 (2011)

## **EURICA**

PD, Gamma-ray Spectroscopy Experiments at RIKEN

### What is EURICA?

RI Beam Production at the RIBF

In-Beam Spectroscopy

Decay Spectroscopy

EURICA

#### ♦ What is EURICA?

RISING Setup at GSI

�1<sup>st</sup> WS

Frame

Summary and Outlook

## EU ROBALL RIKEN

C luster

A rray

- Collaboration that wants to use the EUROBALL Cluster array in the stopped-beam configuration at RIKEN
- 15 Cluster detectors with RISING
  - 105 crystals
    - High granularity
    - 17 % photopeak efficiency at 662 keV

### **RISING Setup at GSI**

RI Beam Production at the RIBF

In-Beam Spectroscopy

Decay Spectroscopy

EURICA

What is EURICA?RISING Setup at GSI

✤1<sup>st</sup> WS

Frame

Summary and Outlook



### 1<sup>st</sup> EURICA WS May 23-24 2011

RI Beam Production at the RIBF

In-Beam Spectroscopy

Decay Spectroscopy

EURICA

What is EURICA?
RISING Setup at GSI

#### ♦ 1<sup>st</sup> WS

Frame

Summary and Outlook

- Collaboration name: EUROBALL RIKEN Cluster Array
- WS photo
- Physics case
  - Many new ideas proposed
  - Spokespersons of already approved decay experiments want to use EURICA
  - Submit set of proposals of new and already approved experiments to NP-PAC in Nov./Dec.
- Organizational structure
  - Collaboration board: 3 EU, 3 JP, (1 US)
- Work tasks

### **EURICA Frame**



#### PD, Gamma-ray Spectroscopy Experiments at RIKEN

### **EURICA Collaboration**

A. Algora<sup>1</sup>, N. Aoi<sup>2</sup>, H. Baba<sup>3</sup>, G. Benzoni<sup>4</sup>, N. Blasi<sup>4</sup>, A. Bracco<sup>4,5</sup>, S. Brambilla<sup>4</sup>, F. Camera<sup>4,5</sup>, I. Celikovic<sup>6,7</sup>, J. Chiba<sup>19</sup>, F. Crespi<sup>4,5</sup>, G. de Angelis<sup>8,9</sup>, G. de France<sup>6</sup>, P. Doornenbal<sup>3</sup>, A. Gadea<sup>1</sup>, A. Garnsworthy<sup>10</sup>, W. Gelletly<sup>16</sup>, J. Gerl<sup>11</sup>, R. Gernhäuser<sup>12</sup>, A. Gottardo<sup>8,9</sup>, G. Hackman<sup>10</sup>, T. Hayakawa<sup>26</sup>, Ch. Hinke<sup>12</sup>, Y. Hirayama<sup>27</sup>, H. Hua<sup>25</sup>, Y. Ichikawa<sup>3</sup>, E. Ideguchi<sup>13</sup>, N. Imai<sup>27</sup>, H. Ishiyama<sup>27</sup>, T. Isobe<sup>3</sup>, S. Jeong<sup>27</sup>, A. Jungclaus<sup>14</sup>, T. Komatsubara<sup>22</sup>, R. Krücken<sup>10</sup>, N. Kurz<sup>11</sup>, J. Lee<sup>3</sup>, S. Leoni<sup>4,5</sup>, M. Lewitowicz<sup>6</sup>, Z.H. Li<sup>3,25</sup>, X. Li<sup>25</sup>, G. Lorusso<sup>3</sup>, R. Lozeva<sup>15</sup>, D. Mengoni<sup>8,9</sup>, B. Million<sup>4</sup>, H. Miyatake<sup>27</sup>, V. Modamio<sup>8,9</sup>, K. Morimoto<sup>3</sup>, T. Motobayashi<sup>3</sup>, T. Nagatomo<sup>3,23</sup>, T. Nakamura<sup>21</sup>, T. Nakao<sup>3</sup>, D. Napoli<sup>8</sup>, M. Niikura<sup>20</sup>, H. Nishibata<sup>2</sup>, M. Nishimura<sup>3</sup>, S. Nishimura<sup>3</sup>, A. Odahara<sup>2</sup>, S. Pietri<sup>11</sup>, Zs. Podolyak<sup>16</sup>, M. Ramdhane<sup>17</sup>, F. Recchia<sup>9</sup>, P. Regan<sup>17</sup>, B. Rubio<sup>1</sup>, E. Sahin<sup>8,9</sup>, M. Sako<sup>24</sup>, H. Sakurai<sup>3</sup>, H. Schaffner<sup>11</sup>, H. Scheit<sup>18</sup>, P. Shury<sup>3</sup>, G. Simpson<sup>17</sup>, T. Sonoda<sup>3</sup>, K. Steiger<sup>12</sup>, D. Steppenbeck<sup>3</sup>, T. Shimoda<sup>2</sup>, T. Sumikama<sup>19</sup>, J. Takatsu<sup>2</sup>, S. Takeuchi<sup>3</sup>, G. Thiamova<sup>17</sup>, H. Ueno<sup>3</sup>, J. Valiente Dobon<sup>8,9</sup>, D. Verney<sup>20</sup>, Y. Wakabashi<sup>26</sup>, T. Wakui<sup>28</sup>, H. Watanabe<sup>3</sup>, Y. Watanabe<sup>27</sup>, O. Wieland<sup>4</sup>, H.J. Wollersheim<sup>11</sup>, Z. Xu<sup>3</sup>, H. Yamaguchi<sup>13</sup>, Y. Ye<sup>25</sup>, A. Yoshimi<sup>3</sup>, and K. Yoshinaga<sup>19</sup>

<sup>1</sup>University of Valencia, Spain
 <sup>2</sup>Osaka University, Japan
 <sup>3</sup>RIKEN Nishina Center, Wako, Japan
 <sup>4</sup>INFN, Milano, Italy
 <sup>5</sup>University of Milano, Italy
 <sup>6</sup>GANIL, Caen, France
 <sup>7</sup>Vinca, France
 <sup>8</sup>LNL, Legnaro, Italy
 <sup>9</sup>University of Padova, Italy
 <sup>10</sup>TRIUMF, Vancouver, Canada
 <sup>11</sup>GSI, Darmstadt, Germany
 <sup>12</sup>TU München, Germany
 <sup>13</sup>CNS, University of Tokyo, Japan
 <sup>14</sup>CSIC, Madrid, Spain

<sup>15</sup>CNRS, Strasbourg, France
 <sup>16</sup>University of Surrey, UK
 <sup>17</sup>IN2P3, Grenoble, France
 <sup>18</sup>TU Darmstadt, Germany
 <sup>19</sup>Tokyo University of Science, Japan
 <sup>20</sup> IPN Orsay, France
 <sup>21</sup> Tokyo Institute of Technology, Japan
 <sup>22</sup> University of Tsukuba, Japan
 <sup>23</sup> ICU, Japan
 <sup>24</sup> Kyoto University, Japan
 <sup>25</sup> Peking University, China
 <sup>26</sup> JAEA, Japan
 <sup>27</sup> KEK, Japan
 <sup>28</sup> Tohoku University, Japan

## **Summary and Outlook**

PD, Gamma-ray Spectroscopy Experiments at RIKEN

### **Summary and Outlook**

RI Beam Production at the RIBF

In-Beam Spectroscopy

Decay Spectroscopy

EURICA

Summary and Outlook

Summary

- Beam time at the RIBF is organized in campaigns
- $E(2_1^+)$  of <sup>38</sup>Mg at 660(10) keV
- First Decay spectroscopy performed at the RIBF in Dec. 2009
- Large interest to perform experiments with EURICA
- First campaign could start in April 2012

## **THE END**

PD, Gamma-ray Spectroscopy Experiments at RIKEN

RI Beam Production at the RIBF

In-Beam Spectroscopy

Decay Spectroscopy

EURICA

Summary and Outlook

# **Backup slides from now**

PD, Gamma-ray Spectroscopy Experiments at RIKEN