Nuclear structure of ¹³²Sn neighbors across the N=82 shell closure

Angela Gargano

L. Coraggio (Napoli)

A. Covello (Napoli)

N. Itaco (Napoli)

T.T.S. Kuo (Stony Brook)

A. Gargano Napoli

INFN

Realistic shell-model calculations with two-body forces

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \langle ij | V_{eff} | kl \rangle a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

V_{eff} derived from the free nucleon-nucleon potential

- Nucleon-nucleon potential
- Many-body perturbative theory

L. Coraggio, A. Covello, A.Gargano, N.Itaco, T.T.S. Kuo, Prog. Part. Nucl. Phys. 62, 135 (2009)

Choice of the nucleon-nucleon potential

CD-Bonn, Argonne V_{18} , Chiral potentials,...

all modern NN potentials fit equally well the deuteron properties and the NN scattering data up to the inelastic threshold $\chi^2/N_{data} \sim 1$

Renormalization of the NN potential

 V_{low-k} approach: construction of a low-momentum NN potential V_{low-k} confined within a momentum-space cutoff $k \le <$

 V_{low-k} from V_{NN} by integrating out its high-momentum components down to the cutoff momentum Λ

preserves the physics of the original $V_{\rm NN}$:

the deuteron binding energy

 \blacklozenge scattering phase-shifts up to the cutoff momentum Λ

S. Bogner,T.T.S. Kuo,L. Coraggio,A. Covello,N. Itaco, Phys. Rev C 65, 051301(R) (2002)

S. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003)

L. Coraggio et al, Prog. Part. Nucl. Phys. 62 (2009) 135

INFN A. G

Two-body effective interaction derived by a many-body perturbation technique: "Q-box folded-diagram method"

In practical applications: diagrams first-, second-,(and third-) order with V_{low-k} in the interaction vertices

V_{eff} defined

- in the nuclear medium
- > in a subspace of the Hilbert space
 - \rightarrow accounts perturbatively for
 - configurations beyond the chosen model space
- core polarization effects

INFN

132Sn region

Shell-model calculations with two-body effective interaction derived from the CD-Bonn potential through the V_{low-k} approach

INFN

A. Gargano

Napoli

Quadrupole 2⁺ mixed-symmetry states (MSS)

MSSs sensitive to the balance of the neutron and proton contributions

→ test for the different components of the effective interation

Mixed symmetry states

states not fully symmetric with respect the exchange of proton and neutron pairs

A two-state model

Signatures of the MS 2⁺ state:

strong M1 to 2⁺_{fs} due the strong isovector part of the M1 transition weak E2 to 0⁺ and to 2⁺_{fs} due to the partial cancellation of the neutron and proton contributions

Xe isotopes

MSSs disappear when moving far from closed shell

... or rise in energy beyond the sensitivity of the experiment?

L. Coquard, N. Pietralla et al, Phys. Rev. C 82, 021317 (2010)

N=80 isotones

Coulex on carbon target @ ORNL with CLARION+ Hyball

 $B(M1;2_{2}^{+} \rightarrow 2_{1}^{+}) = 3.8(24) \ \mu_{N}^{2}$ $B(M1;2_{2}^{+} \rightarrow 2_{1}^{+}) > 0.15 \ \mu_{N}^{2}$

B(E2; $2_2^+ \rightarrow 0_1^+$) = 0.35(13) W.u.

132**Te**

1

A. Gargano

Decay properties for ¹³²Te

	Expt	Calc
B(E2; 2+ ₁ →0+ ₁) in W.u.	8.6(9) ■	7.8
μ(2+ ₁) in μ _N	0.70(10)* 0.56(30) [•]	0.7
B(E2; 2 ⁺ ₂ →0 ⁺ ₁) in W.u.	0.35(13)	0.21
B(E2; 2^{+}_{2} → 2^{+}_{1}) in W.u.	-	0.24
B(M1; 2 ⁺ ₂ →2 ⁺ ₁) in μ^{2}_{N}	3.8(24) >0.15	0.20

 $e_{\pi} = 1.7e$; $e_{\nu} = 0.7e$

by reproducing E2 in $^{134}\mathrm{Te}$ and $^{130}\mathrm{Sn}$

 g_l^{π} ; g_l^{ν} free proton and neutron g_l factors g_s^{π} ; g_s^{ν} 0.7 × free proton and neutron g_s factors from magnetic moments of 6_1^+ states in ¹³⁴Te

D.C. Radford et al, Phys Rev. Lett. 88, 222501 (2002)
N. Benczer-Koller et al, Phys. Lerr. B 664, 241 (2008)
*N.j. Stone et al, Phys Rev. Lett. 94, 192501(2005)

Wave functions ¹³²Te

$$\left|0_{gs}^{+}\right\rangle = 0.94 \left|^{134} \mathrm{Te}; 0_{gs}^{+}\right\rangle \left|^{130} \mathrm{Sn}; 0_{gs}^{+}\right\rangle + \cdots$$

$$\left|2_{1}^{+}\right\rangle = 0.66 \left|{}^{134}\text{Te}; 2_{1}^{+}\right\rangle \left|{}^{130}\text{Sn}; 0_{gs}^{+}\right\rangle + 0.62 \left|{}^{134}\text{Te}; 0_{gs}^{+}\right\rangle \left|{}^{130}\text{Sn}; 2_{1}^{+}\right\rangle + \cdots$$

 $\left|2_{2}^{+}\right\rangle = 0.58 \left|^{134} \text{Te}; 2_{1}^{+}\right\rangle \left|^{130} \text{Sn}; 0_{gs}^{+}\right\rangle - 0.63 \left|^{134} \text{Te}; 0_{gs}^{+}\right\rangle \left|^{130} \text{Sn}; 2_{1}^{+}\right\rangle + \cdots$

Decay properties for ¹³⁶Te

	Expt	Calc
B(E2; $2^{+}_{1} \rightarrow 0^{+}_{gs})$ in W.u.	5(1) *	9.9
B(E2; $2^{+}_{2} \rightarrow 0^{+}_{gs})$ in W.u.	-	0.67
B(E2; $2^{+}_{3} \rightarrow 0^{+}_{gs})$ in W.u.	-	1.04
B(E2; $2^{+}_{2} \rightarrow 2^{+}_{1}$) in W.u.	-	9.6
B(E2; $2^{+}_{3} \rightarrow 2^{+}_{1}$) in W.u.	-	1.4
B(M1; 2 ⁺ ₂ →2 ⁺ ₁) in μ ² _N	-	0.19
$B(M1; 2^+_3 \rightarrow 2^+_1)$ in μ^2_N	-	0.18

Napoli

1 /

 $e_{\pi} = 1.7e$; $e_{\nu} = 0.7e$

 g_l^{π} ; g_l^{ν} free proton and neutron g_l factors

 g_s^{π} ; g_s^{ν} 0.7 × free proton and neutron g_s factors

*New preliminary measurement about 50% higher

EGAN 2011 Workshop Padova

INFN

Napoli

Summary

• Mixed-symmetry states are highly sensitive to the balance between the proton and neutron components \rightarrow they give specific information on the two-body effective interaction ($\pi\pi$, $\nu\nu$, $\pi\nu$ forces)

→ the identification of MSSs in exotic nuclei is of key importance

Realistic shell-model calculations are a reliable tool for shell structure studies in ¹³²Sn region, in particular, they seem to properly describe the changes across the N=82 closure

appropriate for the description of MSSs

New and more accurate data as well a futher shell-model studies are needed

