PHOTON ARRAY FOR STUDIES WITH RADIOACTIVE ON AND STABLE BEAMS

Overview of the PARIS Project

O. Stézowski - IPN Lyon on behalf of the PARIS collaboration

More informations 🖛 http://paris.ifj.edu.pl

The PARIS Project

Walker and the second of the s

4-5-6th October, 2005 «Future prospects for high resolution gamma spectroscopy at GANIL» Convenors : Bob Wadsworth and Wolfram Korten

WG «Collective modes in continuum» Convenors: Silvia Leoni & Adam Maj

GANIL SAC open session October 19th, 2006

Title: High-energy γ -rays as a probe of hot nuclei and reaction mechanisms

<u>Spokesperson(s)</u> (max. 3 names, laboratory, e-mail - please underline among them one corresponding spokesperson): <u>Adam Maj</u>, IFJ PAN Krakow, <u>Adam.Maj@ifj.edu.pl</u> Jean-Antoine Scarpaci, IPN Orsay, <u>scarpaci@ipno.in2p3.fr</u> (EXL and R3B contact) David Jenkins, University of York (UK), <u>dj4@york.ac.uk</u>

<u>GANIL contact person</u> Jean-Pierre Wieleczko, GANIL, <u>wieleczko@ganil.fr</u> Letter of Intent

the state of the second to the second of the

Calorimeter

Spiral2

High energy γ-ray GDR, radiative capture
 Sum-spin spectrometer Discrete γ-ray

low multiplicity

Calorimeter

High energy γ-ray GDR, radiative capture
 Sum-spin spectrometer Discrete γ-ray

low multiplicity

Calorimeter

 $\sum e_i, M_{\gamma}$

general design

Keep interesting

LaBr3 characteristics !??

High energy γ-ray GDR, radiative capture
 Sum-spin spectrometer Discrete γ-ray

low multiplicity

Calorimeter

 $\sum e_i, M_{\gamma}$

> PARIS collaboration

PARIS Management board

A. Maj - project spokesman; D.G. Jenkins, J.P. Wieleczko, J.A. Scarpaci - deputies

Working groups

1.Simulations (O. Stezowski et al.)

2.PARIS mechanical design scenarios (S. Courtin, D. Jenkins et al.)

3. Physics cases and theory background (Ch. Schmitt et al.)

4.Detectors (O. Dorvaux et al.)

5. Electronics (P. Bednarczyk et al.)

6.PARIS-GASPARD synergy (J.A. Scarpaci et al.)

7. Financial issues (J.P. Wieleczko et al.)

8.PARIS in FP7 projects (A. Maj, F. Azaiez et al.)

PARIS Advisory Committee

F. Azaiez (F) -chairman, D. Balabanski (BG), W. Catford (UK), D. Chakrabarty (India),
Z. Dombradi (H), S. Courtin (F), J. Gerl (D), D. Jenkins (UK) - deputy chairman,
S. Leoni (I), A. Maj (PL), J.A. Scarpaci (F), Ch. Schmitt (F), J.P. Wieleczko (F)

J. Pouthas – PARIS liaison to SPIRAL2 project management

> PARIS collaboration

ATTAL & ALTO

PARIS Advisory F. Azaiez (F) -

The state of the s

Members of the Collaboration : PARIS Manageme Give the list of participating institutions and names of collaborators. IFJ PAN Kraków (Poland); P. Bednarczyk, M. Kmiecik, B. Fornal, J. Grebosz, A. Mai, W. Meczyński, A. Maj - project K. Mazurek, S. Myalski, J. Styczeń, M. Ziębliński, M. Ciemała, A. Czermak. R. Wolski, M. Chełstowska IPN Orsay (France): F. Azaiez, J.A. Scarpaci, S. Franchoo, I. Stefan, I. Matea CSNSM Orsay (France): G. Georgiev, R. Lozeva University of York (UK): D.G. Jenkins, M.A. Bentley, B.R. Fulton, R. Wadsworth, O. Roberts Working gi University of Edinburgh (UK): D. Watts IPN Lyon (France): Ch. Schmitt, O. Stezowski, N. Redon IPHC Strasbourg (France): O. Dorvaux, S. Courtin, C. Beck, D. Curien, B. Gall, F. Haas, D. Lebhertz, 1. Simula M. Rousseau, M.-D. Salsac, L. Stuttgé, J. Dudek GANIL Caen (France): J.P. Wieleczko, S. Grevy, A. Chbihi, G. Verde, J. Frankland, M. Ploszajczak, A. 2. PARIS Navin, G. De France, M. Lewitowicz LPC-ENSI Caen (France): O. Lopez, E. Vient Warsaw University (Poland): M. Kicinska-Habior, J. Srebrny, M. Palacz, P. Napiorkowski 3. Physic IPJ Swierk, Otwock (Poland): M. Moszynski BARC Mumbai (India): D.R. Chakrabarty, V.M. Datar, S. Kumar, E.T. Mirgule, A. Mitra, P.C. Rout 4. Detec TIFR Mumbai (India): I. Mazumdar, V. Nanal, R.G. Pillay, G. Anil Kumar University of Delhi, New Delhi (India): S.K. Mandal University of Surrey, Guildford (UK): Z. Podolyak, P.R. Regan, S. Pietri, P. Stevenson 5. Electr(GSI Darmstadt (Germany): M. Górska, J. Gerl University of Oslo (Norway): S. Siem 6.PARIS Oak Ridge (US): N. Schunck ATOMKI Debrecen (Hungary): Z. Dombradi, D. Sohler, A. Krasznahorkay, G. Kalinka, J.Gal, J. Molnar INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria): D. Balabanski, 7. Finan(University of Sofia (Bulgaria): S. Lalkovski, K. Gladnishki, P. Detistov NBI Copenhagen (Denmark): B. Herskind, G. Sletten 8. PARIS UMCS Lublin (Poland): K. Pomorski HMI Berlin (Germany): H.J. Krappe LBNL, Berkeley, CA (US): M.-A. Deleplanque, F. Stephens, I-Y. Lee, P. Fallon iThemba LABS (RSA): R. Bark, P. Papka, J. Lawrie DSM/Dapnia CEA Saday (France): C. Simenel INFN-LNS, Catania (Italy): D. Santonocito INP, NCSR "Demokritos", Athens (Greece): S. Harissopulos, A. Lagoyannis, T. Konstantinopoulos Istanbul University, Instambul (Turkey): M.N. Erduran, M.Bostan, A. Tutay, M. Yalcinkaya, I. Yigitoglu, E. Ince, E. Sahin Nigde University, Nigde (Turkey): S. Erturk Z. Dombradi (Erciyes University, Kayseri (Turkey): I. Boztosun Ankara University, Ankara (Turkey): A. Atac-Nyberg S. Leoni (I), A. Kocaeli University, Kocaeli (Turkey): T. Güray Flerov Laboratory of Nuclear Reactions, JINR, Dubna (Russia): A. Fomichev, S. Krupko, V. Gorshkov. Uppsala University, Uppsala (Sweden): H. Mach KVI, Groningen (The Netherlands): M. Harakeh INFN Milano (Italy): S Brambilla, F, Camera, S, Leoni, O, Wieland, LPSC Grenoble(France): G. Simpson INFN Napoli (Italy): D. Pierroutsakou STFC Daresbury (UK): J. Simpson, J. Strachan, M. Labiche Nuclear Physics Group, The University of Manchester (UK): A. Smith RIKEN Tokyo (JP); P. Doornenbal

J.A. Scarpaci - deputies

D. Jenkins et al.) itt et al.)

> 40 institutions, 17 countries ≈ 100 physicists, engineers, PhD students

D. Chakrabarty (India), - deputy chairman, J.P. Wieleczko (F)

ect management

and a stand for passion with the stand of the second of th

List of requirements related to the different physics cases to be addressed at PARIS										
Physics	Recoil mass	v/c	E _g range	DE,/E,	DE _{sum} /E _{sum}	DMg	W	DT	Ancillaries	Comments
Case		[%]	[MeV]	[%]	[%]	5	coverage	[ns]		
Jacobi transition	40-150	<10	0.1-30	4	<5	4	2p-4p	<1	AGATA	High eff.
									HI det.	Beam rej.
Shape Phase Diagram	160-180	<10	0.1-30	6	<5	4	2p-4p	<1	HI det.	High eff.
										Differential method
										Beam rej.
Hot GDR in n-rich nuclei	120-140	<11	0.1-30	6	<8	4	2p-4p	<1	HI det.	Beam re.
Isospin mixing	60-100	<7	5-30	6	-	-	4p	<1	HI det.	High eff.
										Beam rej.
Reaction dynamics	160-220	<7	0.1-25	6-8	<8	4	2p	<1	n-det.	Complex coupling
									FF det.	
Collectivity vs. multi-	120-200	<8	5-30	5	-	-	2p	<1	LCP det.	Complex coupling
fragmentation									HI det.	
Radiative capture	20-30	<3	1-30	<4	5	-	4p	<1	HI det.	High eff.
Multiple Coulex	40-60	<7	2-6	5	-	-	2p	<5	AGATA	Complex coupling
									CD det.	
Astrophysics	16-90	0.1	0.1-6	6	5	-	4p	<1	Outer PARIS shell as active shield	High eff.
										Back-ground
Shell structure at	16-40	20-40	0.5-4	3	-	-	3р	<<1	SPEG or VAMOS	High eff.
intermediate energies										Low I _{beam}
(SISSI/LISE)										g-g coinc
Shell structure at low	30-150	10-15	0.3-3	3	-	-	3р	<<1	Spectrometer part of S ³	High eff.
energies (separator										Low I _{beam}
part of S ³)										g-g coinc
Relativistic Coulex	40-60	50-60	1-4	4	-	1	Forward 3p	<<1	AGATA	Ang. Distr.
									HI analyzer	Lorentz boost

and a statistic to a second of the second of

ist of requirements related to the different physics cases to be addressed at PARIS										
Physics	Recoil mass	v/c	E _g range	DE _g /E _g	DE _{sum} /E _{sum}	DMg	W	DT	Ancillaries	Comments
Case		[%]	[MeV]	[%]	[%]		coverage	[ns]		
Jacobi transition	40-150	<10	0.1-30	4	<5	4	2p-4p	<1	AGATA	High eff.
									HI det.	Beam rej.
Shape Phase Diagram	160-180	<10	0.1-30	6	<5	4	2p-4p	<1	HI det.	High eff.
										Differential method
										Beam rej.
Hot GDR in n-rich nuclei	120-140	<11	0.1-30	6	<8	4	2p-4p	<1	HI det.	Beam re.
Isospin mixing	60-100	<7	5-30	6	-	-	4p	<1	HI det.	High eff.
										Beam rej.
Reaction dynamics	160-220	<7	0.1-25	6-8	<8	4	2p	<1	n-det.	Complex coupling
									FF det.	
Collectivity vs. multi-	120-200	<8	5-30	5	-	-	2p	<1	LCP det.	Complex coupling
fragmentation									HI det.	
Radiative capture	20-30	<3	1-30	<4	5	-	4p	<1	HI det.	High eff.
Multiple Coulex	40-60	<7	2-6	5	-	-	2p	<5	AGATA	Complex coupling
	16.00								CD det.	
Astrophysics	16-90	0.1	0.1-6	6	5	-	4p	<1	Outer PARIS shell as active shield	High eff.
	17.40	20.10	0.5.4							Back-ground
Shell structure at	10-40	20-40	0.5-4	3			зр	<<1	SPEG or VAMOS	High eff.
								2000		Low beam
	20.1.50	10.16			0					g-g coinc
energys Qr Lator	spec	ial	ly d	esi	gn fe	or k	iigh	re	coil velocit	les ower beam
part of S ³)										g-g coinc
Relativistic Coulex	40-60	50-60	1-4	4	-	1	Forward 3p	<<1	AGATA	Ang. Distr.
		1				1900	1	1150	HI analyzer	Lorentz boost

Physics cases, some numbers

1 10140

staistanes]	-40Me	V	~~~	1%)**(g	ood	$\Delta \sum e_i$,	ΔΜ	γ) < 1i	ns
ist of requirements r	elated to the di	fferent pl	ics cas	es to be a	ddressed at	ARIS				
Physics Case	Recoil mass	v/c [%]	E range [MeV]	DE _g /E _g [%]	DE _{sum} /E _{sum} [%]	DMg	W coverage	DT [ns]	Ancillaries	Comments
Jacobi transition	40-150	<10	0.1-30	4	<5	4	2p-4p	<1	AGATA HI det.	High eff. Beam rej.
Shape Phase Diagram	160-180	<10	0.1-30	6	<5	4	2p-4p	<1	HI det.	High eff. Differential method Beam rej.
Hot GDR in n-rich nuclei	120-140	<11	0.1-30	6	<8	4	2p-4p	<1	HI det.	Beam re.
Isospin mixing	60-100	<7	5-30	6	-	-	4p	<1	HI det.	High eff. Beam rej.
Reaction dynamics	160-220	<7	0.1-25	6-8	<8	4	2р	<1	n-det. FF det.	Complex coupling
Collectivity vs. multi- fragmentation	120-200	<8	5-30	5	-	-	2p	<1	LCP det. HI det.	Complex coupling
Radiative capture	20-30	<3	1-30	<4	5	-	4p	<1	HI det.	High eff.
Multiple Coulex	40-60	<7	2-6	5	-	-	2p	<5	AGATA CD det.	Complex coupling
Astrophysics	16-90	0.1	0.1-6	6	5	-	4p	<1	Outer PARIS shell as active shield	High eff. Back-ground
Shell structure at intermediate energies (SISSI/LISE)	16-40	20-40	0.5-4	3			3р	<<1	SPEG or VAMOS	High eff. Low I _{beam} g-g coinc
Shell Nr Chure at low energy S Of tato C	spec.	ial	$ly^{0.3-3}d$	esi	gn fe	or l	nigh	re	coil velocit	
part of S ²) Relativistic Coulex	40-60	50-60	1-4	4	-	1	Forward 3p	<<1	AGATA	g-g coinc Ang. Distr.

Geant4 simulations

F. and

Geant4 simulations

E.

Resolution @ 662 keV

Geant4 simulations

Resolution @ 662 keV

+ fast decay time (~ 16ns)
+ good timing resolution (~ 250ps)

H.ª

Geant4 simulations

Resolution @ 662 keV

+ fast decay time (~ 16ns)
+ good timing resolution (~ 250ps)

E

Two layers : Labr3 + ... ???

Geant4 simulations

The state of the s

Two layers : Labr3 + ... ???

Geant4 simulations

The state of the s

Two layers : Labr3 + ... ???

Geant4 simulations

The second for any of the second of the seco

STRAIN & MARY

۵Ĺ pile up cells 2" 0.8 Doppler 0.6 - Multiplicity 10 Multiplicity 20 Multiplicity 30 absorption Multiplicity 40 0.4 Multiplicity 50 Multiplicity 60 Multiplicity 70 0.2 Multiplicity 80 Multiplicity 90 Multiplicity 100 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 Ω calorimeter

DE LOW AND X ATABLES STATE

Geant4 simulations

and the second for any the second of the sec

Evolution of PARIS

We all the state to the state of the state o

'Ideal'

Characterisation of the arrays Done, current & next steps

Characterisation of the \neq configuration full absorption efficiency @ $M_{\gamma} = 1$ First studies on reconstructions

More on algorithms More realistic simulations Neutrons Radioactivity Coupling (AGATA, ...) Physics generator

Done, current & next steps

Characterisation of the \neq configuration full absorption efficiency @ $M_{\gamma} = 1$ First studies on reconstructions

More on algorithms More realistic simulations Neutrons Radioactivity Coupling (AGATA, ...) Physics generator

Done, current & next steps

Characterisation of the \neq configuration full absorption efficiency @ $M_{\gamma} = 1$ First studies on reconstructions

More on algorithms More realistic simulations Neutrons Radioactivity Coupling (AGATA, ...) Physics generator

Separation high energy & *S* low energy needed !!!

Characterisation of the arrays Done, current & next steps

Characterisation of the ≠ configuration full absorption efficiency @ $M_{\gamma} = 1$ First studies on reconstructions

addback 'closest'

anti-Compton

More on algorithms More realistic simulations Neutrons Radioactivity Coupling (AGATA, ...) **Physics** generator

Done, current & next steps

Characterisation of the \neq configuration full absorption efficiency @ $M_{\gamma} = 1$ First studies on reconstructions

addback 'closest'

anti-Compton

More on algorithms More realistic simulations Neutrons Radioactivity Coupling (AGATA, ...) Physics generator

Done, current & next steps

Characterisation of the \neq configuration full absorption efficiency @ $M_{\gamma} = 1$ First studies on reconstructions

addback 'closest'

anti-Compton

More on algorithms More realistic simulations Neutrons Radioactivity Coupling (AGATA, ...) Physics generator

Cluster 'Quality'

and a state of the state of the second state o

Characterisa full absorp First studi

E dependency
 Others neuronal networks ... etc

First studi s on reconstructions

tion

addback 'closest'

anti-Compton

More on algorithms More realistic simulations Neutrons Radioactivity Coupling (AGATA, ...) Physics generator

Cluster 'Quality'

Possibilities for the PARIS modules

$$e_1, t_1$$

$$P_D$$

$$PM e, t = \begin{cases} e_1, t_1 \\ e_2, t_2 \end{cases}$$

HARD TO BEAL AND LONG TO A DURSE STATE OF THE STATE OF TH

STRAIG & MANY

DY LOW BUT ALL TALLOUN "FY YOLL

Possibilities for the PARIS modules

$$e_1, t_1$$

$$P_D$$

$$PM e, t = e_1, t_1$$

Cubic 1"x1"x2" LaBr3(Ce) Cubic 2"x2"x2" LaBr3(Ce) Cubic 2"x2"x4" LaBr3(Ce)SP2PP & PROVA fundsCylindrical phoswich 1"x2" LaBr3(Ce) + 1"x6" CsI Cylindrical phoswich 1"x2" LaBr3(Ce) + 1"x6" NaI
Photomultipliers R5505-70, R7723-100, R6236-100, R2083, R7899-01, R6236-01, X, +
Cubic phoswich 2"x2"x2" LaBr3(Ce) + 2"x2"x6" NaI 2 ANR Prova (Orsay, Strasbourg) ☑ 3 SP2PP (Krakow - september) 4 to be ordered by Mumbai
CLUSTER 3X3

Discrimination y-n ...

Discrimination γ -n ...

Discrimination y-n ...

d in inner_outer Ed in inner Ed in outer

Discrimination y-n ...

Discrimination y-n ...

Discrimination y-n ...

Discrimination y-n ...

Discrimination γ -n ...

7.5

Discrimination y-n ...

Nal better than Csl 70000 180 F - FWHM: LaBr 60000 160 FWHM[·] Nal 140 50000 [keV] 120 40000 FWHM 100 30000 80 20000 10000 1000 1200 6000 7000 8000 9000 10000 11000 12000 1000 2000 3000 4000 5000 E [keV] Energy sharing between the two layers simu

Pure LaBr3 or LaBr3::NaI ← 9 phoswich ordered <u>To be done</u> : full \Delta e-\Delta t measurements (source+beam) choice of the best PM *resolution, linearity, efficiency, addback*

Signal processing

The all the second the second of the second

Signal processing

Signal processing

States of the

De Low did to the second which

allow of Learning a

Signal processing

Signal processing

LaBr3

 $R_{511 \ keV} = 5.3\%$ $R_{1778 \ keV} = 2.7\%$ $R_{10762 \ keV} = 1\%$

Signal processing

LaBr3

 $R_{511 \ keV} = 5.3\%$ $R_{1778 \ keV} = 2.7\%$ $R_{10762 \ keV} = 1\%$

Signal processing

<u>LaBr3</u> $R_{511 \ keV} = 5.3\%$ $R_{1778 \ keV} = 2.7\%$ $R_{10762 \ keV} = 1\%$

Signal processing

<u>LaBr3</u> $R_{511 \ keV} = 5.3\%$ $R_{1778 \ keV} = 2.7\%$

 $R_{10762 \ keV} = 1\%$

Signal processing

LaBr3 $R_{511 \ keV} = 5.3\%$ $R_{1778 \ keV} = 2.7\%$ $R_{10762 \ keV} = 1\%$

Signal processing

LaBr3 $R_{511 \ keV} = 5.3\%$ $R_{1778 \ keV} = 2.7\%$ $R_{10762 \ keV} = 1\%$

Signal processing

LaBr3

 $R_{511 \ keV} = 5.3\%$ $R_{1778 \ keV} = 2.7\%$ $R_{10762 \ keV} = 1\%$

State manual Corperate

Signal processing

 $R_{10762 \ keV} = 1\%$

Signal processing

1

PARIS phases & costs

Phase 1 2011 PARIS Prototype	1 cluster: 9 phoswiches		Decided Funds: SP2PP, ANR, Orsay, Strasbourg, Kraków, Mumbai Tests in-beam and with sources
Phase 2 2013 PARIS Demonstrator	4 clusters: 36 phoswiches		Only if Phase1 validated Funds: MoU Ph1Day1 exp@S3
<i>Phase 3</i> 2015 PARIS 2 π	12 clusters: 108 phoswiches		Only if Phase2 validated Funds: MoU, PARIS consortium Ph2Day1 exp. with AGATA and GASPARD Other exp.
<i>Phase 4</i> ≈2017 PARIS 4 π	≥24 clusters: ≥216 phoswiches		Only if Phase3 validated Funds: PARIS consortium Regular experiments in various labs

Preliminary time schedule

Conclusions

found best

Studies for a new calorimeter for SPIRAL 2 (2006 → 2011) : based on LaBr3 single LaBr3 or phoswich LaBr3::NaI in clusters

<u>Cluster 3x3 LaBr3::Nal ordered, to be fully tested</u>:
△e,△t, homogeneity, efficiency, linearity, neutrons
[source, beam, high counting rates]
➡ choices : detector, PM, electronics, etc ...

towards physics at Spiral2

Studie

Cluste

ba

sin

Conclusions

best

II):

Study of collective modes of excitations in the neutron-rich Ba region via fusion-evaporation reactions

Spiral2 Day1-Phase2 LoI

Adam Maj (Kraków), Silvia Leoni (Milano) - spokespersons Christell Schmitt - GANIL Liaison

A. Maj^a, K. Mazurek^{ac}, M. Kmiecik^a, P. Bednarczyk^a, M. Ciemala^a, B. Fornal^a, W. Meczynski^a, J. Grebosz^a, J. Styczeń^a, M. Zieblinski^a et al.,

S. Leoni^b, A.Bracco^b, G.Benzoni^b, F. Camera^b, F.C.L. Crespi^b, N. Blasi^b, B. Million^b,

O. Wieland^b, P.F. Bortignon^b, G. Colò^b, E. Vigezzi^b et al.,

Ch. Schmitt^c, J.P. Wieleczko^c, M. Lewitowicz^c, G. de France^c, M. Rejmund^c, N. Alahari^c, E. Clement^c al.,

F. Azaiez^d, I. Matea^d, I. Stefan^d, M. Niikura^d, D. Beaumel^d, A. Korichi^d, A. Lopez-Martens^d et al., O. Stezowski^e, N. Redon^e, D. Guinet^e, G. Lehaut^e et al.,

J. Dudek^f, O. Dorvaux^f, S. Courtin^f, M. Rousseau^f, G. Duchene^f, D. Curien^f, Ch, Beck^f et al.,

D.R. Chakrabarty^g, V. Nanal^g, I. Mazumdar^g et al.,

T. Dossing^h, B. Herskind^h et al.,

G. De Angelisⁱ, D.R. Napoliⁱ, J.J. Valiente-Dobonⁱ et al.,

D. Bazzacco¹, E. Farnea¹, S.M. Lenzi¹, S. Lunardi¹, D. Mengoni¹, C. Ur¹, F. Recchia¹ et al.

A. Gadea^m, T.Hüyük^m et al.,

J. Simpsonⁿ et al.,

W. Korten^o et al., A. Goergen^p et al.,

D. Jenkins^q, R. Wadsworth^q et al.,

M. Palacz^r, G. Jaworski^r, K. Hadynska-Klek^r, P. Napiorkowski^r, K. Wrzosek-Lipska^r et al.,

A. Atac^s et al.,

and the PARIS-EXOGAM-AGATA collaborations

PART PHOTON ARRAY FOR STUDIES WITH RADIOACTIVE ON AND STABLE BEAMS

Many thanks to :

A. Maj, M. Kmiecik, M. Ciemała, K. Mazurek - Kraków

J.P. Wieleczko, D. Lebhertz, Ch. Schmitt - GANIL

D. Jenkins, O. Roberts - York,

F. Azaiez, G. Hull, M.Josselin, I. Matea, M. Niikura, J.Peyré, J. Pouthas, A. Scarpaci, T.Zerguerras Orsay

A. Chietera, S. Courtin, O. Dorvaux, J. Dudek, Ch. Finck, M. Rousseau – Strasbourg

M. Csatlos, Z. Dombradi – Debrecen

I.Mazumdar, D.R. Chakrabarty, V. Nanal, A.K. Gourishetty – BARC&TIFR Mumbai

J.Strachan – Daresbury

A.Smith – Manchester

+ ...

K. Hadyńska, P. Napiórkowski - Warsaw