EGAN11 Padova, Italy June 27 (27-30), 2011

Nuclear forces and spectroscopy

Takaharu Otsuka University of Tokyo / MSU

How does the nuclear force work in neutron-rich exotic nuclei as manifested by spectroscopy ?

What can we learn about the nuclear force in return ?

- Tensor force 🔶 Spectroscopy of Si isotopes

- 3-body force ... not in this workshop

As N or Z is changed to a large extent in exotic nuclei, the shell structure is changed (evolved) by

Monopole component of the NN interaction

$$v_{m;j,j'} = \sum_{k,k'} \langle jkj'k' | V | jkj'k' \rangle \bigg/ \sum_{k,k'} 1,$$

Averaged over possible orientations

Linearity: Shift
$$\Delta \epsilon_j = v_{m;j,j'} n_{j'} n_{j'}$$
 $n_{j'}$: # of particles in j'

<n_j'> can be ~ 10 in exotic nuclei -> effect quite relevant to neutron-rich exotic nuclei

Strasbourg group made a major contribution in initiating systematic use of the monopole interaction. (Poves and Zuker, Phys. Rep. 70, 235 (1981))

From a comparison to shell model interactions which can reproduce many experimental data in *sd* and *pf* shells, an extremely simple interaction "Monopole-based Universal Interaction V_{MU} has been introduced.

The same interaction for all nuclei

This Ansatz is tested

- theoretically

introducing Renormalization Persistency

Tsunoda, O, Tsukiyama, H.-Jensen (2011)

- experimentally

(i) (e,e'p) on ⁴⁸Ca

(ii) by recent data on ⁴²Si

Monopole-based Universal Interaction V_{MU}

A renormalization process - short-range correlations - in-medium corrections $V = V_c + V_{LS} + V_T$ $V = V'_c + V'_{LS} + V'_T + V_{NNN} + ...$

In general, V_x differs from V'_x (x=c, LS, T). If $V_x = V'_x$, Renormalization Persistency holds.

- not rigorous (good approx. makes sense)

- new way of anatomy of nuclear forces

Treatment of tensor force by V low k and Q box (3rd order)

This remarkable property has been put into shell-model effective interactions without explicitly knowing it.

See an example in the next page.

N3LO (EFT of QCD) for pf-shell

No Renormalization Persistency for Central Force

Central part changes as the cut-off Λ changes

Test by experiments

Spectroscopic factors obtained by (e,e'p) on ${}^{48}Ca$ and the tensor force

Collaboration with Utsuno and Suzuki

Spectroscopic factor for 1p removal from ⁴⁸Ca

Same interaction as the one for $^{\rm 42}{\rm Si}$

- πd_{5/2} deep hole state
 More fragmentation
- Distribution of strength
 - quenching factor 0.7 is needed (as usual).
 - Agreement between
 experiment and theory
 for both position and
 strength

(e,e'p): Kramer et al., NP A679, 267 (2001)

What happens, if the tensor force is taken away?

with full tensor force

no tensor in the cross shell part

Let's use the same interaction* to see

spectroscopic properties of Si isotopes

* - microscopically sound basis

- tested by (e,e'p)

Utsuno, O, Shimizu, Suzuki, Honma, Y. Tsunoda

tensor force between sd and pf shells ON OFF consistent with (e,e'p)

Why oblate deformation in ⁴²Si ground state?

Proton wave function of intrinsic state with axial symmetry

 $(1d_{3/2} \text{ is omitted for simplicity})$

Why prolate deformation at the beginning of the shell? Proton wave function of intrinsic state with axial symmetry

 $(1d_{3/2} \text{ is omitted for simplicity})$

with tensor

without tensor

without tensor in sd-pf

Summary

1. Monopole interactions : effects magnified in neutron-rich nuclei

Nuclear deformation at low-excitation energy is a Jahn-Teller effect. Its description is closely connected to single-particle properties.

2. Tensor force combined with central force : a unified description particularly for proton-neutron monopole correlation.
-> ⁴²Si

Tensor force in nuclear medium is very similar to the bare one as formulated by Renormalization Persistency. The central force may be a challenge for microscopic theories.

This tensor force works well for (e,e'p).

Rapid shape transition within Si isotopes appears as a consequence of characteristic features of nuclear forces.

Neutron single-particle energies at N=20 for Z=8~20

Quick Summary

Dominant monopole forces are due to

END

O, Suzuki, Holt, O, Schwenk, Akaishi, PRL 105 (2010)

