Status and perspectives of detector arrays of LaBr₃:Ce

F. Camera University of Milano – INFN sez. of Milano

Outline:

- LaBr₃:Ce crystal properties
- R&D on LaBr₃:Ce
- The HECTOR⁺ Array
- Conclusions

LaBr₃:Ce Scintillators

L.Y. \approx 63 ph/keV Decay Time \approx 16 ns $\lambda \approx$ 380 nm N \approx 1.9 ρ = 5.3 g/cm³

RL (661 keV) 1.9 cm

Large Interest in scientific community

 In 2007 more than 40 papers on LaBr₃ / LaCl₃ detectors published in IEEE and NIM

Large Volume crystal 9x20 cm are available

LaBr₃ time and energy spectra

Energy resolution: 19 keV at 662 kev

FWHM vs γ -ray energy

Sub-nanosecond time resolution:

Time resolution slightly degrade as crystal volume increases but :

<L(1"x1"> ≈ 10 cm <L(3"x3")> ≈ 42 cm <L(3.5"x8") ≈ 120 cm

Large volume detectors guarantee efficiency for high energy γ -rays

Measurements of mono-energetic high energy γ-rays Excellent separation between F.E.P. and 1stE.P.

PMT non idealities might affect LaBr₃:Ce performances

A LaBr₃:Ce (crystal + commercial PMT and VD) detector suffers of non linearity for high energy gamma rays and gain drift due to temperature, HV drift, and count-rate,

 $\Delta T = 1^{\circ} \implies \Delta E \sim 2 \text{ keV} (@ 661 \text{ keV})$ $\Delta V = 0.25 \text{ V} \implies \Delta E \sim 2 \text{ keV} (@ 661 \text{ keV})$

Non linearity and gain drift due to temperature, HV drift, and count-rate can be monitored, minimized/corrected with a proper design for voltage divider

- using PMT at low voltage is not the optimal solution.

A Voltage divider for LaBr₃:Ce

New Voltage Divider design Active Design

- High Linearity \Rightarrow 1.8% at 9 MeV
- High Stablility vs Count Rate
- Compact Geometry

Additional board for Temperature, and High Voltage monitor and LED source

Full test on schedule

At PMT voltage of 800-900 V the Dynamic range is 0-23 MeV

drift (%) of centroid with C.R.

drift (%) of FWHM with C.R.

A Voltage divider for LaBr₃:Ce

New Voltage Divider design Active Design

At PMT voltage of 800-900 V the Dynamic range is 0-23 MeV

PMT+VD+Amplifier Linearity

NON Linearity correction using PSA techniques

LaBr₃:Ce non linearity can be corrected using clever PSA algorithm

New optimized electronics for LaBr₃:Ce

- Digital board especially optimized for LaBr₃:Ce-

Preliminary results:

- Digital board prototype for BaF₂
- Sampling of LaBr₃:Ce signals (1"x1" and 3"x3") with CAEN VME 2Gs 12 bit board
- Data elaboration in MatLab environment of "direct" signals
 - 540 ps timing resolution FWHM
 - 2,3 % energy resolution at 1332 keV
- Factor 16 decimation (one sample every 8ns: 125 Ms/sec)
- Optimum FIR Filter
- On-line correction of PMT non linearity & saturation
 - 630 ps time resolution FWHM
 - 2,3 % energy resolution at 1332 KeV
- Similar results with Struck 100Ms 16 bit

HECTOR⁺ Array

- High efficiency portable scintillator detector array
- 8 Large Volume BaF₂ Detectors (14 x 17 cm)
- 36 Small Volume BaF₂ Detectors
- <u>10 large Volume LaBr₃:Ce detectors (9 x 20 cm)</u>
 - 8 ready and 2 almost ordered
- It was/will be coupled with
 - HPGe arrays RISING/PRESPEC (GSI) , AGATA (LNL,GSI) ...
 - Scintillator array DALI (RIKEN)
 - Fragment separators FRS (GSI), BigRIBS (RIKEN), ...
 - Charged particle detectors arrays GARFIELD and TRACE (LNL), Si (RIKEN)

A LaBr₃:Ce array, when coupled to a radiation detection system, increases the efficiency and makes much more powerful the physics program

- Very high background
- Few γ transitions
- Extremely rare events
- High energy γ-rays
- 'Low' Budget
- Simple experimental setup
- Easy to transport

Performed experiments

- Measurement of γ-decay of GQR in inelastic scattering reactions (LNL)
- Measurement of isospin mixing in ⁹⁰Zr (LNL)
- Measurement if isomer decay in exotic nuclei (RIKEN)

A LaBr₃:Ce array, when coupled to a radiation detection system, increases the efficiency and makes much more powerful the physics program

Isospin mixing AGATA+LaBr₃:Ce LNL experiment

Planned experiments:

- October GSI LAND setup
- November Debrecen (tests)
- December LNL Agata setup
- 2012 Riken and GSI (Agata)

8 LaBr₃:Ce in barrel configuration Solid angle covered \approx 12.5 % Absolute F.E.P. efficiency at 2 MeV \Rightarrow 5 % Absolute F.E.P. efficiency at 10 MeV \Rightarrow 1.7 %

10 _{LaBr3:Ce} in standard configuration Solid angle covered \approx 7.7 % Absolute F.E.P. efficiency at 2 MeV \Rightarrow 3 % Absolute F.E.P. efficiency at 10 MeV \Rightarrow 1 % Doppler Broadening Correction – Position Sensitivity -

Segmented Photosensor

PSPMT H8500 Silicon Drift Detector pad

- Charge PSF
- Image PSF
- Spatial Resolution
- Spatial Linearity

Measurement in Milano using a collimated source of ¹³⁷Cs and a square 5cm x 5cm 1 cm thick Csl + pads of SDD

Measurement in Milano using a collimated source of ¹³⁷Cs and a cylindrical LaBr₃:Ce 3"x3" and a PSPMT

Conclusions

- We have started an R&D project concerning LaBr₃:Ce for gamma spectroscopy
- The project points to the construction of a trasportable array (HECTOR⁺) which is composed of 10 large volume LaBr₃:Ce
- The array has already been used in LNL coupled with AGATA and in RIKEN coupled with CAITEN and clover detectors
- The array has already a tight schedule of experiments in several laboratories
- Even though there are still several technical aspects which remain to be optimized, LaBr₃:Ce gives a fantastic opportunity for all those experiments where efficiency, time and energy resolution are a key factor

There are several projects based on LaBr₃:Ce detector arrays

- Paris array (Spiral2) \Rightarrow See Next Talk
- Shogun (Riken)
- Califa (GSI)
- Darmstadt
- OSLO

Milano LaBr₃:Ce group

N.Blasi, A. Bracco, S. Brambilla, C.Boiano, FC, F.Crespi, A.Giaz, B.Million, L.Pellegri, S.Riboldi, O. Wieland

F.Birocchi, F.Coniglio

R.Avigo, S.Capra, A.Camplani, S.Ceruti, M.Lafiandra, R.Nicolini, S.Frega, C.Pairani

Politecnico of Milano

C. Fiorini, R. Peloso, A. Marone, P. Busca