Status and perspectives of the PRESPEC campaigns

J. Gerl GSI

June 29, 2011 EGAN11 Workshop Padova, Italy

Nuclear Spectroscopy employing RIBs at GSI

Nuclear Shell structure

- $N \approx Z$
- N>>Z

Nuclear shapes

- Quadrupole, Octupole, Triaxiality
- Shape transitions
- High K-isomers

Collective modes

• N>>Z : GDR soft mode

Nuclear Symmetries

mirror-isospin, pn-pair correlation

Nuclear astrophysics

• r, rp process

Coulomb excitation, Fragmentation and Decay studies using Rare Isotope Beams and high-resolution γ Spectroscopy

Fragment Identification, Implantation and Spectroscopy

RISING Stopped Beam set-up

105 Ge crystals, 3 rings Energy resolution (FWHM): 0.2% Total efficiency: \approx 15 % [at E_y = 1.3 MeV] digital signal processing, time stamped data

Fragment Identification, Reaction and Spectroscopy

Relativistic Coulomb excitation / fragmentation

¹¹²Sn →Au

RISING In-flight set-up

Doppler Effect

Doppler shift

Doppler broadening

High-energy Coulomb excitation triaxiality in even-even nuclei (N=76)

Secondary fragmentation of ⁵⁵Ni on ⁹Be at 140 MeV/u

First observation of higher spin states at relativistic energies

RISING: Fast beam - physics focus

Convener: P. Reiter, University of Cologne 13

From RISING to HISPEC/DESPEC

Decay and **In-beam spectrocopy** programme at the FRS until HISPEC/DESPEC starts

Employing new instrumentation as it becomes available

Platform for coordinated test and commisioning of HISPEC/DESPEC components

Organisational framework of the spectroscopy community at GSI/FAIR

Planned Improvements

PRESPEC time plan

	Main beam time (weeks)	Parasitic beam time (weeks)
2010		PRESPEC
	PRESPEC	LYCCA-0 Commissioning 2
	fast beam campaign 2	
2011	1	HISPEC/DESPEC
		test+commisioning 2
		AGATA - PRESPEC
2012		Preparation 2
	AGATA - PRESPEC	
	fast beam campaign 8	2
2013		
	4	2
		PRESPEC
2014		decay campaign preparation 1
	PRESPEC	
	stopped beam campaigns 5	2

Physics program of PreSpec Fast Beam Campaign

• LYCCA/PRESPEC Commissioning

• 3 Main Experiments

1) B(E2)value of the mixed symmetry 2⁺ transition in ⁸⁸Kr

2) B(E2)value of the 2⁺ transition in ¹⁰⁴Sn

3) Neutron-deficient sd-shell nuclei and mirror symmetry at the drip line

• Test and Commissioning of HISPEC/DESPEC detectors

- Hydrogen target
- Plunger
- High-velocity transient fields
- AGATA

- ...

PRESPEC fast beam set-up

Z - A/Q

Finger detector successfully commissioned with rates up to 10^6 /s

Lund-York-Cologne CAlorimeter (LYCCA)

Fragment identification from ΔE , E and TOF

DSSSD's:

60.60.0.3 mm³, 32 x 32 strips

CsI's:

20·20·11 mm³, 3 x 3 x 3 array

LYCCA x - y

LYCCA successfully commissioned

Andreas Wendt FRS Users Meeting 8.11.2010

⁸⁸Kr Coulex

AGATA at GSI set-up

Challenge: FRS beam size!!!

AGATA S2 Geometry

10 triple Cluster + **5** double Cluster

S2' Geometry: $P_{ph} \le 17\%; \Delta E = 0.4\%$ (sensitivity gain 30x RISING)

First designs of the AGATA@GSI geometry

Nominal Configuration (Target-Array 23.5cm)

Beamline view (showing 125mm OD beamtube)

Courtesy J. Strachan STFC Daresbury

Planned experimental set-up

Physics program of AGATA-PreSpec campaign

34 Lol's received; 6 major themes identified

1) Nuclear structure effects near N=Z:

The neutron-proton degree of freedom and the astrophysical rp-process

- 2) Shell evolution in light neutron-rich nuclei: N=40 and below
- Nuclear structure studies towards ⁷⁸Ni and the evolution of the N=50 shell closure
- 4) Shape evolution and collective motion in nuclei far from stability
- 5) Nuclear structure studies approaching ¹⁰⁰Sn and the heaviest self-conjugate nuclei
- 6) Structure of nuclei in the astrophysically important region near ¹³²Sn

• Many different experimental methods

- e.m. excitation and knock-out together with lifetime measurements (RDM & DSAM)
- light ion induced reactions (p,p') , (p,d) , (p,xp)
- angular correlations, high-velocity transient fields, ...

Towards proposals for the AGATA-PreSpec campaign

• Technical pre evaluation of all Lols

- Local GSI group + coordinators
- Feedback to all Lols
- Working group meetings (September to November 2010)
 - Priorities for each theme (physics, feasibility, urgency,...)
 - Complete FRS simulations (rates, beam profile, ...)
 - AGATA simulations (realistic w. background, RDM, DSAM,...)
- Decision on priorities by end 2010
 - First round submission in autumn 2011
 - Second round submission in autumn 2012

Fast Beam Campaign

great perspectives....

LYCCA-0 provides mass resolution up to A \approx 100

AGATA increases

Tracking det. and EDAQ upgrade increase max. rate and throughput 10x

SIS/FRS intensities increase up to $\approx 10x$

γ-sensitivity 10x ...100x

Very attractive and competitive spectroscopy themes

Unique combination of beams, set-up and people

....thank you

Lifetime measurement using RDDS

Christoph Fransen FRS Users Meeting 8.11,2010

Line shape effect of first 2⁺ state (DSAM)

G. Domingo-Pardo: *Realistic MC-simulation of a fragmentation experiment: DSAM analysis*

g-factor measurement with transient field technique

Proton scattering (LH₂ target)

$d = 6 \text{ cm} \equiv 3 \cdot 10^{23} \text{ cm}^{-2}$

- no absorbing material
- dedicated to (p,p[´]) and knockout

form factor measurement

FIG. 1. 100 MeV $p + {}^{46,48,50}$ Ti elastic differential cross sections plotted as ratio to Rutherford. The solid lines are optical model fits to the 9°-110° data using a WS form factor. The dashed line is obtained by fitting the 9°-168° data of 48 Ti. The dotted-dashed line is obtained with a WS² potential.

A. Obertelli

30