Lifetime measurement in neutron-rich Cu nuclei

M. Doncel ⁽¹⁾, E. Sahin ⁽²⁾

- ⁽¹⁾ Laboratorio de radiaciones ionizantes, Univ. Salamanca, Spain
- ⁽²⁾ INFN-LNL, Legnaro (PD), Italy

Physics Motivation

B(E2) values are essential in order to characterize the levels.

Single-particle excitations across the Z=28 shell gap will provide the information on the Z=28 shell gap size and therefore, its evolution.

Physics Motivation

Multi nucleon transfer reaction

$^{76}Ge + ^{238}U @ E(^{76}Ge) = 577 MeV$

Channels of interest: ⁷⁶Zn: (-2p, 2n) ⁷⁴Zn: (-2p) ⁷²Zn: (-2p,-2n) (C. Louchart talk) ⁷¹Cu: (-3p, -2n) ⁷³Cu: (-3p)

Experimental setup

Agata-D coupled to PRISMA (at 55°) + Köln Plunger

Performed in middle June 2010 Multi-nucleon transfer reactions ⁷⁶Ge + ²³⁸U @ E(⁷⁶Ge)=575 MeV

Experimental setup

RDDS method

Recoil Distance Doppler shift Method (RDDS)

A novel technique that combines the RDDS method with CLARA-PRISMA has been successfully performed using deep-inelastic reactions

J. Valiente-Dobon et al., PRL 102 242502 (2009)

Real experimental conditions

Proposed exp	: 14 days	2 days per distance	5 ATCs
Given exp.	: 10 days	1.5 days per distance	4 ATCs
Real exp.	: 5 days	1 day per distance	4 ATCs
	•		(F. Haas talk)

<u>Run#</u>	Total Time(day)	Size (GB)	Distance (µm)
95-98	1	11	200
100-101	1	14	1000
103-105	1	14	500
107-110	1	15	100
111-112	1 1	1	1900

Beam Intensity: ~ 2pnA Counting Rates: Single Crystal: ~ 40 kHz PRISMA ~ 2 kHz

Real experimental conditions

Measured and theoretical cross sections

(Theoretical cross sections calculated by Suzana Szilner)

Data Analysis (1)

MCP detector:

Exact ion positions in X (theta) and Y (phi) directions (trajectory reconstruction) Angle between the ion and its emitted gamma ray (Doppler correction) Time signal as START for TOF measurement (velocity determination Dopp. correction)

Calibration of the PPAC and Ionization Chamber detectors are done before the experiment.

Data Analysis (2)

Z identification 2.5e+06 Ge 2e+06 Ic_AB_DE:lc 1.5e+06 1e+06 5e+05 ³²Ge 1.6e+05 ³¹Ga Ga 1.2e+05 ³⁰Zn Counts ²⁹Cu Zn Cu Atomic Mass Number (A) Charge state determination Mass separation and selection

(all distances together)

Experimental results. the beam: ⁷⁶Ge

Experimental results. ⁷¹Cu

