Yrast sructure of the protonparticle three-neutron-hole nucleus ²⁰⁶Bi

Natalia Cieplicka

Institute of Nuclear Physics PAN, Krakow, Poland

- * The search for high-lying yrast states in ²⁰⁶Bi
- Valence particle-hole excitations in ²⁰⁶Bi comparison with shell model calculations
- States arising from core excitations high-spin isomers

GAMMASPHERE, Argonne National Laboratory, USA

- * ⁷⁶Ge (450MeV) beam on ²⁰⁸Pb (50mg/cm²) target ⇒ deep-inelastic collisions
- * Pulsed beam ⇒ prompt and delayed gamma-gamma coincidences

²⁰⁶Bi – level scheme

Shell model calculations

- ²⁰⁶Bi: 1 proton and 3 neutron * holes (with respect to ²⁰⁸Pb) states from valence particle and holes couplings up to 23+
- Shell model calculations * describing ²⁰⁶Bi high-spin structure must include core excitations

version of Kuo-Herling interaction

Summary

- New identified transitions in ²⁰⁶Bi deexciting high-lying isomers
- Spin-parity assignment based on: other Bi isotopes,
 - decay pattern and comparison to shell model calculations lower states
 - angular distributions and conversion coefficients high states
- * Next steps:
 - other Bi isotopes,
 - calculation with core excitation,
 - measurement of g-factor,
 - structure of Bi isotopes as a testing ground for the realistic calculations

Thank you for your attention

Spin alignment

Nuclei around ⁷⁶Ge

Wyznaczenie czasu życia izomeru

