

The SAGE Spectrometer Status and first results

Philippos Papadakis

The University of Liverpool

27 June 2011

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary

Optimisation

Dependence of internal conversion coefficients on transition energy (E γ) for nobelium

Nucl. Instr. and Meth. A 589 (2008) 202-229

Dependence of internal conversion coefficients on transition energy (E γ) for nobelium

Nucl. Instr. and Meth. A 589 (2008) 202-229

 $_{\Rightarrow}$ Simultaneous measurement of γ rays and conversion electrons

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary

2 Preliminary Results

Optimisation

4 Geant4 Simulation

S(ilicon) A(nd) GE(rmanium) spectrometer

Employing fully digital front-end electronics

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
	arlaak				

A closer look

- 90 segments
- 50 mm diameter
- 1 mm thick

Simulated normalised count rate distribution using data from SACRED experiments

Detector geometry allowing higher count rates

- 90 segments
- 50 mm diameter
- 1 mm thick

Simulated normalised count rate distribution using data from SACRED experiments

Detector geometry allowing higher count rates

C.A.E.N. A1422 charge sensitive hybrid preamplifiers

- 400 mV/MeV
- Low noise

Detector PCB

C.A.E.N. A1422 charge sensitive hybrid preamplifiers

- 400 mV/MeV
- Low noise

Detector PCB

SAGE

Geant4 Simulation

Simulated transmission efficiency

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary

1 SAGE

2 Preliminary Results

Optimisation

Geant4 Simulation

Summary

¹⁸⁶Hg SAGE experiment

W.C. Ma et al., Phys. Rev. C 47 (1993) 1

M. Scheck et al., PRC 83, 037303 (2011)

¹⁸⁶Hg - Gates on yrast transitions

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary

1 SAGE

2 Preliminary Results

Optimisation

Geant4 Simulation

Test set-up in Liverpool

Geant4 Simulat

Summary

Test set-up in Liverpool

Test set-up in Liverpool

Status of detector during Hg run

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary

1 SAGE

2 Preliminary Results

Optimisation

Geant4 Simulation

Geant4 is a toolkit developed to simulate the passage of particles through matter.

Reasons for Simulation

- Deeper understanding of instrument
- Simulation beforehand to optimise set-up

Daniel Cox, Joonas Konki

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Geant	4 simula	ation			

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Geant	4 simula	ation			

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Geant	4 simula	ation			

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Geant	4 simula	ation			

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Geant	4 simula	ation			

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Geante	4 simul:	ation			

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary

1 SAGE

2 Preliminary Results

Optimisation

Geant4 Simulation

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Summa	ary				

 $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Summ	anu				
Jumma	ary				

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Summ	ary				

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - \bullet Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Summ	ary				

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV
- First experimental campaign completed successfully

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV
- First experimental campaign completed successfully
 - Mercury isotopes

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV
- First experimental campaign completed successfully
 - Mercury isotopes
 - Radon isotopes

- $\bullet\,$ Simultaneous measurements of γ rays and conversion electrons
- Coupled with RITU + GREAT
 - Detection of recoils and their subsequent decays at the focal plane [fission, $\alpha,~{\rm e^-},~\gamma]$
 - Recoil Decay Tagging technique
- Upgrade from analogue to digital electronics
 - Higher count rates (30 kHz/Ge detector)
 - Linear throughout the energy range
- JUROGAM II
 - Increase of efficiency from 4.2 % to 5.5 % @ 1332 keV
- First experimental campaign completed successfully
 - Mercury isotopes
 - Radon isotopes
- Experimental campaign scheduled for later on in the year

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Summa	iry				

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary

Summary

Outline	SAGE	Preliminary Results	Optimisation	Geant4 Simulation	Summary
Summ	nary				

Collaboration

University of Liverpool, UK R.-D. Herzberg, P. Papadakis, J. Pakarinen, P.A. Butler, D. Cox, J.R. Cresswell, E. Parr, J. Sampson, D.A. Seddon, J. Thornhill, D. Wells

University of Jyväskylä, Finland P.T. Greenlees, J. Sorri, K. Hauschild, P. Jones, R. Julin, P. Peura, P. Rahkila, M. Sandzelius

STFC Daresbury Laboratory, UK J. Simpson, P.J. Coleman-Smith, I.H. Lazarus, S.C. Letts, V.F.E. Pucknell

