

Coulomb Excitationof Isomeric states of ⁷⁰Cu

EGAN 2011, 27th -30th June 2011

N=40 and Coulexof the Cu isotopes

✓ high E(2⁺) in ⁶⁸Ni (R. Broda*et al.,* PRL 74 (95) 868)
 ✓ proposed new magic number N=40

⁷⁸Se ⁷⁹Se ⁸³Se 73Se ⁷⁷Se Se ⁸¹Se °Se Se "Se Se Se Se ⁸¹As ⁸²As ⁷¹As 72As ⁷⁹As ⁸⁰As ⁷⁶As ⁷⁷As ⁷⁸As As As As As As ⁷⁰Ge ⁷¹Ge ⁷²Ge ⁷⁵Ge ⁷⁶Ge ⁷⁷Ge ⁷⁸Ge ⁷⁹Ge ⁸⁰Ge ⁸¹Ge ⁷³Ge ⁷⁴Ge ⁸²Ge ⁸³Ge ⁶⁸Ga ⁶⁹Ga ⁷⁰Ga ⁷¹Ga ⁷²Ga ⁷³Ga ⁷⁴Ga ⁷⁵Ga ⁷⁶Ga ⁷⁷Ga ⁷⁸Ga ⁷⁹Ga ⁸⁰Ga ⁸¹Ga ⁸²Ga ⁵⁸Zn⁶⁹Zn ⁷¹Zn ⁷²Zn ⁷³Zn ⁷⁴Zn ⁷⁵Zn ⁷⁶Zn ⁷⁷Zn ⁷⁸Zn ⁷⁹Zn ⁶⁷Zn ⁸¹Zn ⁰Zn ⁶⁵Cu ⁶⁶Cu ⁶⁷Cu ⁶⁸Cu ⁶⁹Cu ⁷⁰Cu ⁷¹Cu ⁷²Cu ⁷³Cu ⁷⁴Cu ⁷⁵Cu ⁷⁶Cu ⁷⁷Cu ⁷⁸Cu ⁷⁹Cu ⁸⁰Cu ⁶⁵Ni ⁶⁷Ni ⁶⁸Ni ⁶⁹Ni ⁷¹Ni ⁷²Ni ⁷³Ni ⁷⁴Ni ⁷⁵Ni ⁷⁶Ni ⁷⁷Ni ⁶⁴Ni ⁸Ni Ni ⁷⁰Ni N=50 63C0 64C0 65C0 66C0 67C0

n-rich Cu isotopes provide an excellent means for testing the proton-neutron residual interaction in this mass -region;

2005: Coulomb excitation of odd-odd ^{68,70}Cu;
 2006: Coulomb excitation of odd-mass ^{67,69,71,73}Cu.

The odd – odd ⁷⁰Cu

> the low-energy level schemes dominated by multiplets originating from the coupling of the odd proton with the odd neutron $\pi p_{3/2} \otimes \nu g_{9/2} = 3^-, 4^-, 5^-, 6^-$ or $\pi p_{3/2} \otimes \nu p_{1/2} = 1^+, 2^+$

> B(E2) values within the states of the $\pi p_{3/2} \otimes \nu g_{9/2}$ multiplet offers important information about the *p*-*n* residual interaction across N=40.

⁷⁰Cu: J. Van Roosbroeck et al., PRL92(2004)112501, J. Van Roosbroeck et al., PRC69(2004)034313.

⁷⁰Cu: J. D. Sherman et al., Phys.Lett. B67(1977)275

68,70Cu: I. Stefanescu et al., Phys.Rev. Lett 98(2007)122701

EGAN 2011, 27th -30th June 2011

IsomericBeamsfrom REX-ISOLDE

- technique based on in-source laser spectroscopy
- (Ü. Köster et al., NIM B, 160, 528(2000); L. Weissman et al., PRC65, 024315(2000)).
- \succ set the laser frequency to select and maximize the production of the isomer of interest.

+ postacceleration by REX-ISOLDE

Experimentaldetails

^{68,70}Cu: I. Stefanescu et al., Phys.Rev. Lett 98(2007)122701

EGAN 2011, 27th -30th June 2011

⁷⁰Ga contamination

3

00

The separator is not able to separate ⁷⁰Cu from ⁷⁰Ga

⁷⁰Ga and⁷⁰Cu impinges both on target

Laser ON⁷⁰Cu + ⁷⁰Ga

Laser ON – Laser OFF to disentangle Cu interaction from Ga interactions

Laser OFF⁷⁰Ga

200

100

300

400

600

700

800 900

Time (s)

500

Laser ON-OFFmode

EGAN 2011, 27th - 30th June 2011

EGAN 2011, 27th -30th June 2011

EGAN 2011, 27th -30th June 2011

Cross Section: 127 KeV

Measurement of the $(4^- \rightarrow 3^-)$ cross section in both experiments Isomeric Composition of the ⁷⁰Cu beam is known Disentangle the σ ($6^- \rightarrow 4^-$) and σ ($3^- \rightarrow 4^-$)

CLX code
Matrix element = 0.23(3) eb
B(E2, 3⁻→ 4⁻) = 73(10) e² fm⁴

CLX code
Matrix element 0.30(4) eb
B(E2, 6⁻→ 4⁻) = 69(9) e² fm⁴

Cross-Section 511 KeV

Challenge to measure

Assuming only ($3^- \rightarrow 5^-$) excitations

- CLX code
 Matrix element 0.308(19) eb
 D(E2, 22) E1) 124(1E) e2 fr
- B(E2, $3^{-} \rightarrow 5^{-}$) = 136(15) $e^{2} \text{ fm}^{4}$

Shell Models: comparison

Large Shell-Model calculations with ANTOINE code

Calculationsby N. Smirnova

realistic interaction

(M. Hjorth-Jensen et al. , Phys.Rep.26(2004)

 model space is1f5/2 2p3/2 2p1/2 1g9/2 outside the ⁵⁸Ni inert core;

Calculationsby K. Sieja

•hybridinteraction(S.Lenzi et al., PRC82, 05430(2010)) + evolution of the proton gap from ⁶⁸Ni to ⁷⁸Ni,

40

⁷⁰Cu

41

42

 model space is1f7/2 1f5/2 2p3/2 2p1/2 for protons and 1f5/2 2p3/2 2p1/2 1g9/2 1d5/2 for neutrons outside the ⁴⁸Ca inert core;

• ⁷²Cu

43

Neutron Number

Summary and more

• the observation of the 511 KeV decaying transition fixes the energy, spin and parity assignment of the 5⁻ member of the $\pi p_{3/2} \otimes v g_{9/2}$ multiplet; • E2 transitions within the multiplet of states have been investigated 511 (M1)

- B(E2, $6^{-} \rightarrow 4^{-}) = 69(9) e^{2} \text{ fm}^{4}$
- B(E2, 3⁻→ 4⁻) = 73(10) e² fm⁴
- B(E2, 6⁻→ 5⁻) ≤11(2) e² fm⁴
- $B(E2, 3 \rightarrow 5) = 136(15) e^2 fm^4$
- Comparison withLargeShellModelCalculationsreveals:
- ✓ largepolarization of the ⁵⁶Ni core in ⁷⁰Cu,
- the fpgdmodelspaceisnecessary;
- from systematic of n-rich Cu isotopes:
- ✓ enhanced collectivity is predicted in ⁷²Cu not experimentally observed,
- ✓ the role of the d5/2 orbital deserves further investigation

... What we have learned

228

27 (M1)

101

0

E2

E2

Collaboration

- **IKS Leuven, Belgium -** I. Stefanescu, J. Diriken, N. Bree, M. Huyse, O. Ivanov, N. Patronis, J. Van de Walle, P. Van Duppen, B. Bastin
- IPN Orsay, France S. Franchoo
- CSNSM Orsay, France G. Georgiev, E. Fiori, R. Lozeva
- IKP Köln, Germany N. Warr, A. Blazhev, J. Jolie, M. Kalkuehler, M. Seidlitz
- TU München, Germany V. Bildstein, R. Gernhauser, Th. Kröll,
 T. Behrens, R. Krücken, P. Maierbeck, K. Wimmer
- University of Camerino, Italy D.L. Balabanski, K. Gladnishki, G. Lo Bianco, S. Nardelli
- Warsaw University, Poland J. Iwanicki, K. Hadynska, K. Wrzosek, M. Zielinska, J. Srebrny
- NCSR Demokritos, Greece S. Harissopulos, A. Lagoyannis, Th. Konstantinopoulos
- University of Liverpool, UK P. Butler
- ✓ Universiteit Ghent, Belgium K. Heyde, A. De Maesschalck, N. Smirnova
- CERN, Geneva, Switzerland J. Cederkäll, A. Ekström, L.M. Fraile,
 P. Delahaye, V. Fedoseev, U. Köster, B. A. Marsh, T. Sieber, D. Voulot,
 F. Wenander

and the ISOLDE and Miniball collaborations

Acknowledgement: Marie Curie Intra-European Fellowship of the EC's FP7

EGAN 2011, 27th -30th June 2011

