Single particle states in ⁶⁷Ni First results of ⁶⁶Ni(d,p)⁶⁷Ni using MINIBALL @ REX-ISOLDE

J. Diriken for the IS469 Collaboration

Instituut voor Kern- & Stralingsfysica - Katholieke Universiteit Leuven

EGAN Workshop 2011 - Padova June 28, 2011

- Local maximum in $E_{ex}(2^+_1)$
- Minimum in $B(E2; 0^+ \rightarrow 2^+)$
- No irregularity in S_{2n}
- Shell effects to be expected, importance of N = 40,50 shell gaps

 R. Broda et al. PRL 74:868 (1995), N. Bree et al. PRC 78:041307 (2008), O. Sortin et al. PRL 88:092501 (2002), S. Rahaman et al.
48 EPJA 34:5 (2007), O. Perru et al. PRL96:232501 (2006), E. Caurier et al. EPJA 15:145 (2002)

- Local maximum in $E_{ex}(2^+_1)$
- Minimum in $B(E2; 0^+ \rightarrow 2^+)$
- No irregularity in S_{2n}
- Shell effects to be expected, importance of N = 40,50 shell gaps

R. Broda et al. PRL 74:868 (1995), N. Bree et al. PRC 78:041307 (2008), O. Sorlin et al. PRL 88:092501 (2002), S. Rahaman et al. EPJA 34:5 (2007), O. Perru et al. PRL96:232501 (2006), E. Caurier et al. EPJA 15:145 (2002)

- Local maximum in $E_{ex}(2^+_1)$
- Minimum in $B(E2; 0^+ \rightarrow 2^+)$
- No irregularity in S_{2n}
- Shell effects to be expected, importance of N = 40,50 shell gaps

R. Broda et al. PRL 74:868 (1995), N. Bree et al. PRC 78:041307 (2008), O. Sorlin et al. PRL 88:092501 (2002), S. Rahaman et al. EPJA 34:5 (2007), O. Perru et al. PRL96:232501 (2006), E. Caurier et al. EPJA 15:145 (2002)

- Local maximum in $E_{ex}(2^+_1)$
- Minimum in $B(E2; 0^+ \rightarrow 2^+)$
- No irregularity in S_{2n}
- Shell effects to be expected, importance of N = 40,50 shell

gaps

R. Broda et al. PRL 74:868 (1995), N. Bree et al. PRC 78:041307 (2008), O. Sorlin et al. PRL 88:092501 (2002), S. Rahaman et al. EPJA 34:5 (2007), O. Perru et al. PRL96:232501 (2006), E. Caurier et al. EPJA 15:145 (2002)

Questions

- Study the ground state structure (⁶⁸Ni ⊗ν⁻¹)
- g-factor of the 9/2⁺-state is smaller by a factor of 2 than expected for a 1g_{9/2}-state
- Determination of spin and parity of the first excited states
- Investigation of the single particle character of these levels → *SF* and *ANC*

Questions

- Study the ground state structure (⁶⁸Ni ⊗ν⁻¹)
- g-factor of the 9/2⁺-state is smaller by a factor of 2 than expected for a 1g_{9/2}-state
- Determination of spin and parity of the first excited states
- Investigation of the single particle character of these levels → *SF* and *ANC*

Questions

- Study the ground state structure (⁶⁸Ni ⊗ν⁻¹)
- g-factor of the 9/2⁺-state is smaller by a factor of 2 than expected for a 1g_{9/2}-state
- Determination of spin and parity of the first excited states
- Investigation of the single particle character of these levels → *SF* and *ANC*

Questions

- Study the ground state structure (⁶⁸Ni ⊗ν⁻¹)
- g-factor of the 9/2⁺-state is smaller by a factor of 2 than expected for a 1g_{9/2}-state
- Determination of spin and parity of the first excited states
- Investigation of the single particle character of these levels → *SF* and *ANC*

66Ni(d,p)67Ni @ 3MeV/A

Questions

- Study the ground state structure (⁶⁸Ni ⊗ν⁻¹)
- g-factor of the 9/2⁺-state is smaller by a factor of 2 than expected for a 1g_{9/2}-state
- Determination of spin and parity of the first excited states
- Investigation of the single particle character of these levels → SF and ANC

T-REX @ MINIBALL

V. Bildstein Prog.Part.Nucl.Phys 59:386 (2007)

Detector	Angles	Thickness	Segmentation
Forw. Barrel (ΔE)	30-75	140 μ m	16 resistive strips
Forw. Barrel (E)	30-75	1000 μ m	-
Back. Barrel (ΔE)	104-152	140 μ m	16 resistive strips
Back. Barrel (E)	104-152	1000 μ m	-
Back. CD	152-172	500 μ m	16 annular x 24 radial

T-REX @ MINIBALL

V. Bildstein Prog.Part.Nucl.Phys 59:386 (2007)

Detector	Angles	Thickness	Segmentation
Forw. Barrel (ΔE)	30-75	140 μ m	16 resistive strips
Forw. Barrel (E)	30-75	1000 μ m	-
Back. Barrel (ΔE)	104-152	140 μ m	16 resistive strips
Back. Barrel (E)	104-152	1000 μ m	-
Back. CD	152-172	500 μ m	16 annular x 24 radial

MINIBALL γ -array

Main characteristics

- 8 Miniball clusters
- Each cluster: 3 HPGe crystals
- Each crystal: 6-fold segmented
- 8% efficiency @ 1 MeV

Slow coincidence technique

- Identify population of (9/2⁺) isomeric state and/or states decaying via this isomere
- Implant beam on removable foil (cycletime: ~ 8 hours)
- Make correlation on longer time scale (120 μs vs. 2 μs (MINIBALL)) with protons detected in particle array

Slow coincidence technique

- Identify population of (9/2⁺) isomeric state and/or states decaying via this isomere
- Implant beam on removable foil (cycletime: ~ 8 hours)
- Make correlation on longer time scale (120 μs vs. 2 μs (MINIBALL)) with protons detected in particle array

Slow coincidence technique

- Identify population of (9/2⁺) isomeric state and/or states decaying via this isomere
- Implant beam on removable foil (cycletime: ~ 8 hours)
- Make correlation on longer time scale (120 μs vs. 2 μs (MINIBALL)) with protons detected in particle array

Measured proton energy spectrum

- Population of levels up to 6 MeV, strong feeding around 3.6 MeV
- ⁶⁷Ni excitation energy can be deduced from measured proton energy
- Use as trigger for γ -rays detected by MINIBALL

Measured proton energy spectrum

- Population of levels up to 6 MeV, strong feeding around 3.6 MeV
- ⁶⁷Ni excitation energy can be deduced from measured proton energy
- Use as trigger for γ -rays detected by MINIBALL

Measured proton energy spectrum

- Population of levels up to 6 MeV, strong feeding around 3.6 MeV
- ⁶⁷Ni excitation energy can be deduced from measured proton energy
- Use as trigger for γ-rays detected by MINIBALL

Fitted half-life in agreement with previous measurement of 13.3(2) μs B. Grzywacz *et al.* PRL 81:766 (1998)

 Fitted half-life in agreement with previous measurement of 13.3(2) μs R. Grzywacz *et al.* PRL 81:766 (1998)

 Fitted half-life in agreement with previous measurement of 13.3(2) μs R. Grzywacz *et al.* PRL 81:766 (1998)

Counts /2 keV

- $\blacksquare Very rich proton-gated \gamma spectrum$
- γ -transitions up to 5800 keV are observed
- Possibilities for $p-\gamma-\gamma$ coincidences
- Additional information from p-γ-Beamdump coincidences and excitation energy deduced from proton energy

- $\blacksquare Very rich proton-gated \gamma spectrum$
- γ -transitions up to 5800 keV are observed
- Possibilities for $p-\gamma-\gamma$ coincidences
- Additional information from p-γ-Beamdump coincidences and excitation energy deduced from proton energy

- $\blacksquare Very rich proton-gated \gamma spectrum$
- γ -transitions up to 5800 keV are observed
- Possibilities for $p-\gamma-\gamma$ coincidences
- Additional information from p-γ-Beamdump coincidences and excitation energy deduced from proton energy

67 Ni excitation energy versus E_{γ}

⁶⁷Ni excitation energy versus E_{γ}

67 Ni excitation energy versus E_{γ}

67 Ni excitation energy versus E_{γ}

Indications of a populated level around 2.5 MeV which does not decay directly to the ground state \Rightarrow good candidate for $\nu 2d_{5/2}$ -state (N=50) Extensively new spectroscopic information on 67 Ni

Extraction of angular distributions

⁶⁷Ni excitation energy versus E_{γ}

Proton angular distributions

Proton angular distributions

Proton angular distributions

A look into the future...

Accepted proposal: ⁶⁶Ni(t,p)⁶⁸Ni reaction

- Characterisation of the excited 0⁺ states
 - 0₂⁺: pure $\nu(p_{1/2})^{-2}$ or mixture of many different 2p-2h states?
 - 0_3^+ : $\nu(f_{5/2})^{-2}$ or proton intruder?
 - 2⁺₂: Spin confirmation required
- Complementary information from ⁶⁶Ni(t,d)⁶⁷Ni reaction

 $(t,d) \rightarrow 1/2^{-1}$

 $(t.d) \rightarrow 5/2^{-1}$

 $(t,d) \rightarrow 9/2$

150

Conclusion & Outlook

Conclusions

- Succesfull first one neutron transfer experiment around ⁶⁸Ni using T-REX and MINIBALL @ REX-ISOLDE
- Population of excited states up to 6 MeV are observed, most probably above N = 50
- New and extensive spectroscopic information on ⁶⁷Ni to serve as benchmarks for new Shell Model calculations using different interactions
- Outlook
 - Recent experiment: ⁷⁸Zn(d,p)⁷⁹Zn (october 2010) and proposed continuation (⁸⁰Zn(d,p))
 - Accepted proposal: ⁶⁶Ni(t,p)⁶⁸Ni (september 2011) and ⁷²Zn(t,p)⁷⁴Zn (TUM - october 2011)
 - Approval of HIE-ISOLDE (beam energy up to 10 MeV/u) \Rightarrow increased ΔL sensitivity

Collaboration

- IKS, K.U. Leuven: J. Diriken, I.G. Darby, H. De Witte, J. Elseviers, M. Huyse, R. Raabe, T. Roger, P. Van Duppen
- University of Ioannina: N. Patronis, A. Pakou
- Technische Universität München: V. Bildstein, R. Gernhäuser, R. Krücken, D. Muecher, K. Wimmer
- IKP, Darmstadt: Th. Kröll
- **CERN, ISOLDE:** J. Pakarinen, J. Van de Walle, D. Voulot, F. Wenander
- CSNSM, Orsay: G. Georgiev, C. Sotty, H. Tornqvist
- IKP, Cologne: A. Blazhev, Ch. Fransen, H. Hess, J. Jolie, P. Reiter, M. Seidlitz, N. Warr
- Democritos: T. Mertzimekis
- UWS, Paisley: A. Andreyev, R. Orlandi
- Comenius University Bratislava: A. Antalic