EGAN 2011 Workshop, June 26 - June 30, 2011 in Padova

Evolution of nuclear deformation in neutron-rich Kr isotopes

Michael Albers

Institut für Kernphysik Universität zu Köln

SPONSORED BY THE

Federal Ministry of Education and Research

W. Urban et al., Eur. Phys. J. A, 22:241–252, 2004

Introduction

D. Mücher et al., Prog. In Part. And Nucl. Phys. 59 (2007), 361

Introduction

D. Mücher et al., Prog. In Part. And Nucl. Phys. 59 (2007), 361

N. Marginean et al., PRC80, (2009), 021301

S. Naimi et al., Phys Rev Lett 105 (2010) 032502

N. Marginean et al., PRC80, (2009), 021301

Experimentall setup at REX/ISOLDE at CERN

	⁹⁴ Kr		⁹⁶ Kr	
	2009	2010	2009	2010
Lifetime: [ms]	212 (5) ms		80(6) ms	
Beam energy: [MeV]	267.9		273.6	
t _{collect} + t _{breed} [ms]	~ 80	~ 132	~ 100	~132
Charge state	22+		23+	
A/q	4.27		4.17	
# ions at target [lons/sec]	3·10 ⁶	2.8·10 ⁶	5.2·10 ⁴	4.4·10 ⁴
Secondary target	¹⁹⁶ Pt		¹⁹⁶ Pt	¹⁹⁴ Pt
Beam time	17h	12h	9h	16.5h

The MINIBALL γ – spectrometer

Determination of the beam composition during the ⁹⁶Kr experiments in

<u>อ</u>ี3000 energy loss in gas deter energy loss in gas deter 1500 1500 ⁹⁶Kr+⁹⁶Rb ٥ò 0' residual energy in Si detector rel. intensity (counts/3 chan) ⁹⁶Rb ⁹⁶Kr energy loss in gas detector

The Coulomb excitation experiments with ⁹⁶Kr

Preliminary γ -spectra of the ⁹⁶Kr experimental runs in

2009

2010

N. Marginean et al., PRC80, (2009), 021301

Determination of the B(E2; $2^+_1 \rightarrow 0^+_1$) values with the ,,normalization method"

$$\begin{split} \sigma_{\text{Coulex}}(2_{1}^{+}) \Box \left\langle 2_{1}^{+} \left| \mathsf{ME} \right| 0_{1}^{+} \right\rangle \Box \ \mathsf{B}(\mathsf{E2};2_{1}^{+} \to 0_{1}^{+}) \\ \sigma_{\text{Coulex}}(2_{1}^{+}) \Box \left\langle 2_{1}^{+} \left| \mathsf{ME} \right| 2_{1}^{+} \right\rangle \Box \ \mathsf{Q}(2_{1}^{+}) \end{split}$$

Determination of the B(E2; $2^+_1 \rightarrow 0^+_1$) values with the ,,normalization method"

Determination of E2 transition strengths GOSIA2

- Coupled-channel Coulomb-excitation code GOSIA2^[1], based on the Coulomb-excitation theory of Winther and deBoer ^[2]:
 - Information about the experimental setup:
 - Position of the CD detector
 - Positions of the 24 Miniball cluster detectors
 - Reaction kinematics for both, projectile and target nuclei
 - Information about the target:
 - A, Z, thickness
 - low-lying level energies, diagonal and transitional matrix elements
 - Experimental data (lifetimes, multipole mixing ratios, ...)
 - Information about the projectile:
 - A, Z, beam energy, energy loss in target
 - Low-lying level scheme (as far as known)
 - Start parameter for the diagonal and transitional matrix elements
 - Variation of the projectile matrix elements of the 2⁺₁ state, until experimental yields are reproduced, or
 - Determination of the χ^2 value with respect to a set of start parameters for the matrix elements of the 2⁺₁ state

[1]: T. Czosnyka, D. Cline, and C.Y. Wu. Bull. Am. Phys. Soc., 28:745, 1983.[2]: A. Winther and J. de Boer, *Coulomb Excitation*, (Academic, New York, 1965)

χ^2 -surface scan of the ⁹⁶Kr data from 2009 and 2010

Summary of the experimental results

Summary of the experimental results

Derivation of the IBM-2 Hamiltonian based on meanfield calculations for the neutron-rich Kr isotopes

- **1.** Calculation of the Potential Energy Surface (PES) in the $(\beta\gamma)$ plain from mean-field calculations, based on the effective Gogny-D1S interaction
- **2.** Reproduction of the PES by varying the parameter in the IBM-2 Hamiltonian ζ and χ
- 3. Calculation of level energies based on this parameters

Derivation of the IBM-2 Hamiltonian based on meanfield calculations for the neutron-rich Kr isotopes

Summary

- The energy of the 2_{1}^{+} state in 94 Kr was confirmed
- For 96 Kr, the level energy of the 2_{1}^{+} state was corrected
- For both nuclei E2 decay transition strengths were obtained for the first time
- □ The extended E(2⁺₁) and B(E2; 2⁺₁ → 0⁺₁) systematics confirm the results from mass measurements at ISOLTRAP and imply a smooth change of nuclear deformation in the neutron-rich Kr isotopes
- Calculation within the interacting boson model 2 are in good agreement with the experimental data

Collaborators

M. Albers	IKP Köln (GER)
N. Warr (Spokeperson)	IKP Köln (GER)
N. Marginean (Co-Spokesperson), G. Filipescu, C. Mihai	HHNIPNE Bucharest (ROM)
D. Mücher, K. Nowak, K. Wimmer	TU München (GER)
A. Blazhev, J. Jolie, C. Bernards, L. Bettermann, M. Cappellazzo, C. Fransen, M. Hackstein, D. Radeck, P. Reiter, M. Seidlitz, B. Siebeck, T. Thomas, K.O. Zell	IKP Köln (GER)
P. van Duppen, B. Bastin, H. de Witte, J. Diriken	KU Leuven (BEL)
R. Wadsworth, D. Jenkins, J. Butterworth, B.S. Nara Singh	University of York (UK)
S. Das Gupta	INFN-Sezione di Perugia (I)
L. Gaffney, S. Rigby	University of Liverpool (UK)
T. Kröll, M. Scheck	TU Darmstadt (GER)
G. Georgiev	CSNSM Paris (FR)
G. Simpson	LPSC Grenoble (FR)
J. van de Walle	KVI Groningen (NL)
J. Pakarinen	CERN, Genf, (SUI)
M. Zielinska	Uni Warsaw (POL)
K. Nomura, T. Otsuka	Uni Tokyo (JAP)
REX-ISOLDE Collaboration	

MINIBALL Collaboration

Granted by BMBF under No 06KY205I and 06KY9136I