Correlations versus shell evolution in the Nuclear Shell Model

Frédéric Nowacki

Strasbourg-Madrid Shell-Model collaboration
Shell structure and correlations

- at stability
 - double magicity + superdeformed states: 16O, 40Ca, 56Ni

- far from stability
 - Vanishing of shell closure: 11Li, 32Mg, 42Si, 68Ni, 80Zr ...
 - New gaps: 24O, 54Ca ...

Interplay between
- Monopole field (spherical mean field)
- Multipole correlations (pairing, Q.Q, ...)

“Pairing plus Quadrupole propose, Monopole disposes”

A. Zuker, Coherent and Random Hamiltonians, CRN Preprint 1994

For the Monopole field itself,
interplay between
- single particle field
- two-body interaction (T=1, T=0)
Island of inversion at N=40: an old story

A. Poves

CR and FR around N=40

A new region of deformation.

A situation that reminds what is known at N=20 FFS.

\[g(0^+ - 2^+) = 5.70 \]
\[g(0^+ - 4^+) = 8.30 \]

\[Q = -9.0 \text{ b}^2 \]
\[B(\alpha) = 19.8 \text{ b}^2 \]

\[\frac{E(4^+)}{E(2^+)} = 2.7 \]

\[\frac{E(4^+)}{E(2^+)} = (3.2) (3.4) \]

in the sd-shell configurations.

\[\text{CS} < 1\% \]
\[\eta(d5/2) = 1.1 \]
Collectivity at $N = 40$ in neutron-rich 64Cr

1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
4Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA

Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?

1CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
2GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen, France
3CNRS-CNRS-IN2P3, F-01405 Orsay, France
SM framework

Island of inversion around 64Cr

S. Lenzi, F. Nowacki, A. Poves and K. Sieja

LNPS interaction:

- based on realistic TBME
- new fit of the pf shell (KB3GR, E. Caurier)
- monopole corrections

Calculations:

- up to 14p-14h excitations across Z=28 and N=40 gaps
- up to 10^{10}
- m-scheme code ANTOINE (non public version)
Triple coexistence in 68Ni

- at first approximation, 68Ni has a double closed shell structure for GS

- But low lying structure much more complex

- three (now four) coexisting 0^+ states appear between 0 and ~ 2.5 MeV
at first approximation, ^{68}Ni has a double closed shell structure for GS

But low lying structure much more complex

three (now four) coexisting 0^+ states appear between 0 and ~ 2.5 MeV
Shape transition at N=40

Graph (a)

- **E(2^+)(MeV)**
- **Z**
- **N=40**

Graph (b)

- **B(E2;2^+ -> 0^+)(e^2 fm^4)**
- **Z**

Table

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>νg(9/2)</th>
<th>νd(5/2)</th>
<th>configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁶⁸Ni</td>
<td>0.98</td>
<td>0.10</td>
<td>0p0h(51%)</td>
</tr>
<tr>
<td>⁶⁶Fe</td>
<td>3.17</td>
<td>0.46</td>
<td>4p4h(26%)</td>
</tr>
<tr>
<td>⁶⁴Cr</td>
<td>3.41</td>
<td>0.76</td>
<td>6p6h(23%)</td>
</tr>
<tr>
<td>⁶²Ti</td>
<td>3.17</td>
<td>1.09</td>
<td>4p4h(48%)</td>
</tr>
</tbody>
</table>
Neutron effective single particle energies

- Reduction of the $\nu d_{3/2}-f_{7/2}$ gap with removing $d_{5/2}$ protons
- Proximity of the quasi-SU3 partner $p_{3/2}$

- Reduction of the $\nu f_{5/2}-g_{9/2}$ gap with removing $f_{7/2}$ protons
- Proximity of the quasi-SU3 partner $d_{5/2}$
Spin-Tensor decomposition

Shell evolution and nuclear forces,
N.A. Smirnova, B. Bally, K. Heyde, F. Nowacki, K. Sieja

\[(f_7^2-d_3^2)\] shell gap evolution between \(^{32}\text{Mg}\) and \(^{34}\text{Si}\)
Spin-Tensor decomposition

\[V = \sum V_k = \sum U_k \cdot S_k \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(S)</th>
<th>(S')</th>
<th>spin-tensor components</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>C=Central</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(l)</td>
<td>ALS=antisymmetric spin-orbit</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(l)</td>
<td>LS=spin-orbit</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>T=Tensor</td>
</tr>
</tbody>
</table>

Proton number

ESPE (MeV)
Spin-Tensor decomposition

Shell evolution and nuclear forces,
N.A. Smirnova, B. Bally, K. Heyde, F. Nowacki, K. Sieja

$(f_7^2 - d_3^2)$ shell gap evolution between 32Mg and 34Si

\[
\begin{array}{ccc}
\Delta (f_7^2 - d_3^2) \text{ filling } d_5^2 \\
\hline
G \text{ matrix} & SDPF-U & \text{diff.} \\
\text{Tot} & 1.57 & 1.17 & -0.40 \\
\text{Central} & 1.11 & 0.70 & -0.41 \\
\text{Vector} & -0.159 & -0.155 & 0.004 \\
\text{LS} & -0.049 & -0.12 & -0.071 \\
\text{ALS} & -0.11 & -0.035 & 0.075 \\
\text{Tensor} & 0.61 & 0.63 & 0.02 \\
\end{array}
\]

Proton number

ESPE (MeV)
Neutron rich $sd – pf$ nuclei

Silicium chain

- Reduction of $d_{5/2} - d_{3/2}$ $Z=14$ gap with filling $f_{7/2}$ neutron orbital
- Reduction of $p_{3/2} - p_{1/2}$ spin-orbit splitting with filling $s_{1/2}$ proton orbital
- Reduction of $f_{7/2} - p_{3/2}$ $N=28$ gap with filling $d_{3/2}$ neutron orbital

"Tensor mechanism"
Neutron rich sd – pf nuclei

Silicium chain

- Reduction of $d_{5/2} - d_{3/2}$, $Z=14$ gap with filling $f_{7/2}$ neutron orbital
- Reduction of $p_{3/2} - p_{1/2}$ spin-orbit splitting with filling $s_{1/2}$ proton orbital
- Reduction of $f_{7/2} - p_{3/2}$, $N=28$ gap with filling $d_{3/2}$ neutron orbital

“Tensor mechanism”
Neutron rich $sd – pf$ nuclei

Silicium chain

- Reduction of $d_{5/2} - d_{3/2}$ $Z=14$ gap with filling $f_{7/2}$ neutron orbital
- Reduction of $p_{3/2} - p_{1/2}$ spin-orbit splitting

$\Delta (d_{3/2} - d_{5/2})$ filling $f_{7/2}$

<table>
<thead>
<tr>
<th></th>
<th>G matrix</th>
<th>SDPF-U</th>
<th>diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tot</td>
<td>-3.15</td>
<td>-2.38</td>
<td>+0.77</td>
</tr>
<tr>
<td>Central</td>
<td>0.24</td>
<td>-0.11</td>
<td>-0.35</td>
</tr>
<tr>
<td>Vector</td>
<td>-0.27</td>
<td>0.55</td>
<td>0.82</td>
</tr>
<tr>
<td>LS</td>
<td>-0.11</td>
<td>0.11</td>
<td>0.22</td>
</tr>
<tr>
<td>ALS</td>
<td>-0.16</td>
<td>0.44</td>
<td>0.60</td>
</tr>
<tr>
<td>Tensor</td>
<td>-2.65</td>
<td>-2.77</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Evidence for a spin–aligned neutron–proton paired phase from the level structure of ^{92}Pd

doi:10.1038/nature09644
New proton-neutron coupling scheme in 92Pd?

Claim for transition from Cooper pairs to aligned p-n pairs.
New proton-neutron coupling scheme in 92Pd

- In $A=90-100$ region, spin-orbit is at play: strong $Z=50$ shell closure and the $g_{\frac{9}{2}}$ orbital deeply bound with respect to the remaining gds orbitals.

- Level schemes of $A \sim 90$ nuclei to be described within $g_{\frac{9}{2}}$ orbital.

- Regular level spacing and constant BE2's.

- Wave function analysis lead to condensate of $(pn)^J=9^+$ pairs.

<table>
<thead>
<tr>
<th>Shell Model</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^+</td>
<td>4072</td>
</tr>
<tr>
<td>8^+</td>
<td>3127</td>
</tr>
<tr>
<td>6^+</td>
<td>2466</td>
</tr>
<tr>
<td>6^+</td>
<td>2535</td>
</tr>
<tr>
<td>4^+</td>
<td>1708</td>
</tr>
<tr>
<td>4^+</td>
<td>1786</td>
</tr>
<tr>
<td>2^+</td>
<td>878</td>
</tr>
<tr>
<td>2^+</td>
<td>874</td>
</tr>
<tr>
<td>0^+</td>
<td>0</td>
</tr>
<tr>
<td>0^+</td>
<td>0</td>
</tr>
</tbody>
</table>
How to assess (pn) condensate regime

1) build \((j_{p1}j_{n1})^{N}_{J=2j}\) objects

2) diagonalise \((J = 2j; T = 0)\) single matrix element for given system

- take the overlap with effective wave function
- take the expectation value of pair counting operator
- first two methods give \(\sim\) results, and provide relative estimate
- counting pairs provides absolute estimate
calculations with effective $g_{9/2}^\text{eff}$ (Chong et al.) and JUN45 (Otsuka et al.) interactions

- striking similarity of computed spectra

- regular level spacing and constant BE2’s

- BUT quantitative differences between wave functions and underlying physics

- 29% of $(g_{9/2}^\text{eff})^{12}$ configuration left in the full space calculation

- vanishing Q’s in $r3g$
- large and constant in $g_{9/2}$
Table: correlated JT=90 pairs content in the yrast band of in 92Pd.

| J^π | $\langle con|\psi_{92Pd}\rangle$ | $\langle con|\psi_{92Pd}\rangle$ |
|---------|-----------------|-----------------|
| | g$_{9/2}$ | r$_{3g}$ |
| 0$^+$ | 0.83 | 0.45 |
| 2$^+$ | 0.87 | 0.48 |
| 4$^+$ | 0.91 | 0.58 |
| 6$^+$ | 0.87 | 0.62 |
| 6$^+$ | 0.73 | 0.57 |
| 8$^+$ | 0.86 | 0.69 |
| 10$^+$ | 0.35 | 0.34 |
| 24$^+$ | 1.00 | 0.99 |

```
10^+     4072
  330
  8^+     3127
   298
  6^+     2466
   345
  4^+     1708
   325
  2^+     878
   239
  0^+     0

10^+     4071
  335
  8^+     3217
   316
  6^+     2535
   364
  4^+     1786
   382
  2^+     874
   304
  0^+     0
```

EGAN 2011 workshop, June 26-30, 2011
Table: Number of correlated JT=90 pairs in the yrast band of ^{92}Pd.

<table>
<thead>
<tr>
<th>J^π</th>
<th>N_{pair}</th>
<th>N_{pair}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_9/2$</td>
<td>2.26</td>
<td>1.34</td>
</tr>
<tr>
<td>0$^+$</td>
<td>2.32</td>
<td>1.48</td>
</tr>
<tr>
<td>2$^+$</td>
<td>2.35</td>
<td>1.65</td>
</tr>
<tr>
<td>4$^+$</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>6$^+$</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>8$^+$</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>10$^+$</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>24$^+$</td>
<td>3.87</td>
<td>3.87</td>
</tr>
</tbody>
</table>

Diagram showing energy levels and transition energies for ^{92}Pd.
Table: Number of correlated JT=90 pairs in the yrast band of ^{92}Pd.

<table>
<thead>
<tr>
<th>J^π</th>
<th>N_{pair}</th>
<th>g_9</th>
<th>r_3g</th>
<th>N_{pair}</th>
<th>g_9</th>
<th>r_3g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+</td>
<td>2.26</td>
<td>1.34</td>
<td>2.26</td>
<td>1.34</td>
<td>2.32</td>
<td>1.48</td>
</tr>
<tr>
<td>2^+</td>
<td>2.32</td>
<td>1.48</td>
<td>2.35</td>
<td>1.65</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>4^+</td>
<td>2.35</td>
<td>1.65</td>
<td>2.38</td>
<td>1.69</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>6^+</td>
<td>2.38</td>
<td>1.69</td>
<td>2.38</td>
<td>1.69</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>8^+</td>
<td>2.38</td>
<td>1.69</td>
<td>2.38</td>
<td>1.69</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>10^+</td>
<td>2.38</td>
<td>1.69</td>
<td>2.38</td>
<td>1.69</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>24^+</td>
<td>3.87</td>
<td>3.87</td>
<td>3.87</td>
<td>3.87</td>
<td>3.87</td>
<td>3.87</td>
</tr>
</tbody>
</table>

Overestimation with $[(a^\dagger a^\dagger)^{J_{T_0}} (aa)^{J_{T_0}}]^{00}$ operator

$N_{p_0}^{J_0 T_0} = \beta_{J_0} \sum J \alpha_{J,J_0} [(a^\dagger a^\dagger)^{J_{T_0}} (aa)^{J_{T_0}}]^{00}$

$\alpha_{J,J_0} = -\frac{2J_0+1}{\sum J (2J+1)}$ for $J \neq J_0$

$\alpha_{J_0,J_0} = \frac{\sum J \neq J_0 (2J+1)}{\sum J (2J+1)}$

$\beta_{J_0} = \frac{\sum J (2J+1)}{\sum J \neq J_0 (2J+1)}$
JT=90 pairs content

Table: Number of correlated JT=90 pairs in the yrast band of 92Pd.

<table>
<thead>
<tr>
<th>J^π</th>
<th>N_{pair}</th>
<th>N_{pair}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$g_9/2$</td>
<td>r_3g</td>
</tr>
<tr>
<td>0^+</td>
<td>2.26</td>
<td>1.34</td>
</tr>
<tr>
<td>2^+</td>
<td>2.32</td>
<td>1.48</td>
</tr>
<tr>
<td>4^+</td>
<td>2.35</td>
<td>1.65</td>
</tr>
<tr>
<td>6^+</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>8^+</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>10^+</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>24^+</td>
<td>3.87</td>
<td>3.87</td>
</tr>
</tbody>
</table>

Diagram showing levels and energies for 92Pd.

sm g9:

- 10^+ at 4072
- 8^+ at 330
- 6^+ at 298
- 4^+ at 2466
- 2^+ at 878
- 0^+ at 0

exp.:

- 10^+ at 4071
- 8^+ at 335
- 6^+ at 3217
- 4^+ at 2535
- 2^+ at 874
- 0^+ at 0

sm f5p3p1g9:

- 10^+ at 4071
- 8^+ at 335
- 6^+ at 3217
- 4^+ at 2535
- 2^+ at 874
- 0^+ at 0
Table: Number of correlated JT=90 pairs in the yrast band of 92Pd.

<table>
<thead>
<tr>
<th>J^π</th>
<th>$N_{pair}^{g_9/2}$</th>
<th>N_{pair}^{r3g}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0$^+$</td>
<td>2.26</td>
<td>1.34</td>
</tr>
<tr>
<td>2$^+$</td>
<td>2.32</td>
<td>1.48</td>
</tr>
<tr>
<td>4$^+$</td>
<td>2.35</td>
<td>1.65</td>
</tr>
<tr>
<td>6$^+$</td>
<td>2.38</td>
<td>1.69</td>
</tr>
<tr>
<td>8$^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10$^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24$^+$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With JUN45 interaction in $r3g$ space:
- Weak content of $J = 9T = 0$ (pn) pairs
- Seniority zero component (35%) larger than condensate component (20%)!
Case of ^{52}Fe (mate of ^{96}Cd)

Table: correlated JT=70 pairs content in the yrast band of in ^{52}Fe.

| J^π | $\langle \text{cond}|\Psi_{^{52}\text{Fe}}\rangle$ | $\langle \text{cond}|\Psi_{^{52}\text{Fe}}\rangle$ | $f_{7/2}$ | fp |
|---------|---------------------------------|---------------------------------|---------|-------|
| 0^+ | 0.99 | 0.99 | 0.99 | 0.66 |
| 2^+ | 0.99 | 0.99 | 0.99 | 0.66 |
| 4^+ | 0.99 | 0.99 | 0.99 | 0.66 |
| 6^+ | 0.98 | 0.98 | 0.98 | 0.54 |
| 8^+ | 0.99 | 0.99 | 0.99 | 0.75 |
| 10^+ | 0.99 | 0.99 | 0.99 | 0.81 |
| 12^+ | 1.00 | 1.00 | 1.00 | 0.81 |

Diagram:

- **sm f7**:
 - 12^+ at 9426
 - 10^+ at 8190
 - 8^+ at 6370
 - 6^+ at 4332
 - 4^+ at 2392
 - 2^+ at 850

- **exp.**:
 - 10^+ at 7381
 - 12^+ at 6820
 - 8^+ at 6360
 - 6^+ at 4325
 - 4^+ at 2384
 - 2^+ at 850

- **sm fp**:
 - 10^+ at 7687
 - 12^+ at 7638
 - 8^+ at 6663
 - 6^+ at 4647
 - 4^+ at 2731
 - 2^+ at 983

EGAN 2011 workshop, June 26-30, 2011
Case of ^{52}Fe (mate of ^{96}Cd)

Table: correlated JT=70 pairs content in the yrast band of ^{52}Fe.

| J^π | $\langle \text{cond}|\Psi_{^{52}\text{Fe}}\rangle$ | $f_{7/2}$ |
|--------|----------------------------------|---------|
| 0$^+$ | 0.99 | |
| 2$^+$ | 0.99 | |
| 4$^+$ | 0.99 | |
| 6$^+$ | 0.98 | |
| 8$^+$ | 0.99 | |
| 10$^+$ | 0.99 | |
| 12$^+$ | 0.81 | |

- Rotor regime for low-lying states
- Same conclusion holds for ^{96}Cd
Identification of Excited States in the $T_z = 1$ Nucleus 110Xe: Evidence for Enhanced Collectivity near the $N = Z = 50$ Double Shell Closure

M. Sandzelius,¹ B. Hadinia,¹ B. Cederwall,¹,⋆ K. Andgren,¹ E. Ganioğlu,² I. G. Darby,³ M. R. Dimmock,³ S. Eeckhautd,⁴ T. Grahn,⁴,† P. T. Greenlees,⁴ E. Ideguchi,⁵ P. M. Jones,⁴ D. T. Joss,³ R. Julin,⁴ S. Juutinen,⁴ A. Khablanov,¹ M. Leino,⁴ L. Nelson,³ M. Niikura,⁵ M. Nyman,⁴ R. D. Page,³ J. Pakarinen,⁴,† E. S. Paul,³ M. Petri,³ P. Rahkila,⁴ J. Sarén,⁴ C. Scholey,⁴ J. Sorri,⁴ J. Uusitalo,⁴ R. Wadsworth,⁶ and R. Wyss¹

¹Department of Physics, The Royal Institute of Technology, S-10691 Stockholm, Sweden
²Science Faculty, Physics Department, Istanbul University, 34459 Istanbul, Turkey
³Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
⁴Department of Physics, University of Jyväskylä, FIN-40014 Jyväskylä, Finland
⁵Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan
⁶Department of Physics, University of York, Heslington, York Y010 5DD, United Kingdom

(Received 30 January 2007; published 11 July 2007)

Gamma-ray transitions have been identified for the first time in the extremely neutron-deficient ($N = Z + 2$) nucleus 110Xe, and the energies of the three lowest excited states in the ground-state band have been deduced. The results establish a breaking of the normal trend of increasing first excited 2^+ and 4^+ level energies as a function of the decreasing neutron number as the $N = 50$ major shell gap is approached for the neutron-deficient Xe isotopes. This unusual feature is suggested to be an effect of enhanced collectivity, possibly arising from isoscalar $n-p$ interactions becoming increasingly important close to the $N = Z$ line.
Deformation in light Xenon isotopes

Identification of Excited States

M. Sandzelius,1 B. Hadinia,1 B. J. L. Gilbert,1 T. Grahn,4,† P. T. Greenlees,4 E. Thuneberg,4 L. Nelson,3 M. Niikura,5 M. Nyrén,6

1 Department of Physics, Uppsala University, Box 530, S-751 20 Uppsala, Sweden
2 Science Institute, University of Iceland, 107 Reykjavik, Iceland
3 Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZL, United Kingdom
4 Department of Physics, University of York, York YO10 5DD, United Kingdom
5 Center for Nuclear Study, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
6 Department of Physics, University of Gothenburg, Box 463, S-405 30 Gothenburg, Sweden

Gamma-ray transition intensities have been measured for the 20 (Z + 2) nucleus ^{110}Xe, and the level energies have been deduced. The results provide evidence for enhanced collectivity due to isoscalar n-p interactions for the neutron-deficient Xe isotopes in the mass region 110 ≤ A ≤ 136. Data are from the present work and Refs. [23,30].

claim for enhanced collectivity due to isoscalar n-p interactions

FIG. 3 (color online). Energies of 2^+_1 (squares) and 4^+_1 (circles) states plotted versus neutron number N for even-even Xe isotopes in the mass region 110 ≤ A ≤ 136. Data are from the present work and Refs. [23,30].
In A=100 region, spin-orbit is at play: strong Z=50 shell closure and the $g_{9/2}$ orbital deeply bound with respect to the remaining gds orbitals.

The natural valence space beyond 100Sn is made of $g_{7/2}$, $d_{5/2}$, $d_{3/2}$, $s_{1/2}$, and $h_{11/2}$ orbitals.

But at N=Z, $h_{11/2}$ is higher and the other orbitals close to each other.

One recovers a pseudo-fp space where SU3 symmetry scheme available.
Deformation in light Xenon isotopes

In the A=100 region, spin-orbit interactions are significant because of the strong Z=50 shell closure. The g_{9/2} orbital is deeply bound with respect to the remaining g_{7/2}, d_{5/2}, d_{3/2}, s_{1/2}, and h_{11/2} orbitals.

At N=Z, h_{11/2} is higher and the other orbitals are close to each other, leading to a pseudo-fp space where SU3 symmetry is available.

The image includes a diagram of the Shells model expansion for 100Sn, showing the occupation of orbitals up to 14^+ with energies up to 5980 MeV.

The observed energies (exp.) are compared with the shell model predictions (shell model exp.).
Deformation in light Xenon isotopes

In $A=100$ region, spin-orbit is at play: strong $Z=50$ shell closure and the $g_{\frac{9}{2}}$ orbital deeply bound with respect to the remaining gds orbitals.

The natural valence space beyond 100Sn is made of $g_{\frac{7}{2}}$, $d_{\frac{5}{2}}$, $d_{\frac{3}{2}}$, $s_{\frac{1}{2}}$, and $h_{\frac{11}{2}}$ orbitals.

But at $N=Z$, $h_{\frac{11}{2}}$ is higher and the other orbitals close to each other.

One recovers a pseudo-fp space where SU3 symmetry scheme available.
A case of extreme triaxiality: ^{110}Xe

<table>
<thead>
<tr>
<th>J</th>
<th>E*</th>
<th>E_γ</th>
<th>BE2</th>
<th>Q_{sp}</th>
<th>Q_0 (BE2)</th>
<th>Q_0 (Qsp)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+</td>
<td>0.35</td>
<td>0.35</td>
<td>1005</td>
<td>-62</td>
<td>225</td>
<td>217</td>
<td>0.16</td>
</tr>
<tr>
<td>4^+</td>
<td>0.92</td>
<td>0.57</td>
<td>1450</td>
<td>-78</td>
<td>226</td>
<td>215</td>
<td>0.16</td>
</tr>
<tr>
<td>6^+</td>
<td>1.71</td>
<td>0.79</td>
<td>1568</td>
<td>-83</td>
<td>224</td>
<td>208</td>
<td>0.16</td>
</tr>
<tr>
<td>8^+</td>
<td>2.64</td>
<td>0.94</td>
<td>1591</td>
<td>-87</td>
<td>220</td>
<td>207</td>
<td>0.16</td>
</tr>
<tr>
<td>10^+</td>
<td>3.73</td>
<td>1.09</td>
<td>1530</td>
<td>-86</td>
<td>213</td>
<td>198</td>
<td>0.15</td>
</tr>
<tr>
<td>12^+</td>
<td>4.95</td>
<td>1.22</td>
<td>1431</td>
<td>-85</td>
<td>204</td>
<td>191</td>
<td>0.15</td>
</tr>
<tr>
<td>14^+</td>
<td>5.98</td>
<td>0.99</td>
<td>0.05</td>
<td>-126</td>
<td>1</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>16^+</td>
<td>6.63</td>
<td>0.69</td>
<td>111</td>
<td>-125</td>
<td>56</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>18^+</td>
<td>7.51</td>
<td>0.88</td>
<td>1184</td>
<td>-130</td>
<td>183</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>20^+</td>
<td>8.51</td>
<td>1.00</td>
<td>1043</td>
<td>-134</td>
<td>172</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>2^+_2</td>
<td>1.10</td>
<td></td>
<td></td>
<td>+61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3^+</td>
<td>1.33</td>
<td>0.23</td>
<td>1774</td>
<td>-1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4^+_2</td>
<td>1.56</td>
<td>0.23</td>
<td>1395</td>
<td>-38</td>
<td>219</td>
<td>261</td>
<td>0.18</td>
</tr>
<tr>
<td>5^+</td>
<td>1.88</td>
<td>0.32</td>
<td>938</td>
<td>-54</td>
<td>217</td>
<td>234</td>
<td>0.17</td>
</tr>
<tr>
<td>6^+_2</td>
<td>2.21</td>
<td>0.33</td>
<td>600</td>
<td>-74</td>
<td>209</td>
<td>259</td>
<td>0.17</td>
</tr>
</tbody>
</table>

One could extract the γ from:

$$\frac{BE2(2^+_\gamma \rightarrow 2^+_1)}{BE2(2^+_\gamma \rightarrow 0^+_1)} = \gamma = 20^\circ$$

Notice $Q(2^+_\gamma) = -Q(2^+_\text{Yrast})$ and $Q(3^+) \sim 0$ as results from $3K^2 - J(J+1)$ for $K=2$ and $J=3$.

Comments about $h_{11/2}$ influence:

- reduced M. I.: $E(2^+) = 0.19$
- slight increase of coll.: $BE2(2^+) = 1110$
- no backbending
- reduced triaxiality $\gamma = 12^\circ$
- better $J(J+1)$
- magnetic moments consistent with rot. model up to $J=20$
A case of extreme triaxiality: ^{110}Xe

One could extract the γ from:

$$\gamma = 20^\circ$$

$Q(2^+_\text{Yrast})$ and $Q(2^+_2)$ results from $3K^2 - J(J+1)$ for $K=2$ and $J=3$

$h_{11/2}$ influence

M. I. : $E(2^+) = 0.19$

Slight increase of coll. : 1110

No backbending

Reduced triaxiality $\gamma = 12^\circ$

Better $J(J+1)$ magnetic moments consistent with model up to $J=20$
Backbend plots
Alignment properties in 108Xe

The graph shows the number of $J=11$, $T=0$ pairs as a function of angular momentum J. The data are represented by two lines:

- A black line with squares, labeled $(r4)^6(h_{11/2})^2$.
- A red line with circles, labeled yrast.

The x-axis represents J values, ranging from 0 to 24, and the y-axis represents the number of $J=11$, $T=0$ pairs, ranging from 0 to 0.8.
Alignment properties in ^{110}Xe

The graph shows the number of JT-aligned pairs as a function of angular momentum (J) for two different alignment properties: $J=11, T=0$ (black circles) and $J=10, T=1$ (red squares). The number of aligned pairs increases with increasing J for both cases, but the $J=11, T=0$ case shows a sharper rise and a subsequent sharper drop compared to the $J=10, T=1$ case.
Isovector pairing properties

The diagram shows the number of J=0 T=1 pairs for two isotopes of xenon: 108Xe and 110Xe. The number decreases as J increases, with 108Xe showing a slightly higher pair density compared to 110Xe.
Isoscalar pairing properties

![Graph showing number of J=1 T=0 pairs for \(^{108}\text{Xe}\) and \(^{110}\text{Xe}\)](image-url)
Summary

- Monopole drift develops in all regions but the interplay between correlations (pairing + quadrupole) and spherical mean-field (monopole field) determines the physics. It can vary from:
 - island of deformation at N=20 and N=40
 - deformation at Z=14, N=28 for 42Si and shell weakening at Z=28, N=50 for 78Ni
- Spin-Tensor analysis of the effective interaction in sd-pf show mainly central and tensor components effects
- Quadrupole energies can be huge and understood in terms of symmetries
- As well as in lighter systems, in mid-mass nuclei (like Xenon isotopes) isoscalar correlations in $N \sim Z$ nuclei appear to be weak for low-lying states
- In $A \sim 90$ region for 92Pd and 96Cd do not show condensate regime in LSSM
Summary

Thanks to:

- E. Caurier, K. Sieja, A. Zuker
- A. Poves
- H. Grawe, S. Lenzi, O. Sorlin