y-ray Spectroscopy Studies in Bucharest

C. Mihai

IFIN-HH Bucharest

y spectroscopy setup

Unique mixed gamma detection array

7-8 55% HPGe detectors5-8 LaBr₃:Ce detectors

The mechanics and the reaction chambers allow <u>flexibility</u> in the configuration of the detectors for various experiments

LaBr₃:Ce detectors

- Best energy resolution achievable with scintillators
- Timing comparable with BaF₂: 100-300 ps depending on crystal size
- 3 2"x2", 3 1.5"x1.5", 2 conical shaped 1"x1.5"x1.5" (total 8 LaBr₃:Ce detectors)
- Might be used to measure lifetimes in the 50ps few ns range

In-Beam Fast Timing Electronic Diagram

CFD walk correction

•⁶⁰Co source placed in target position

•One LaBr₃:Ce detector taken as •time reference

•Time reference detector gated on the 1332 keV full-energy peak

The CFD walk dependence on amplitude is removed using offline corrections, in order to insure similar time response for all elements of the detection system

Fast-timing test case: ¹⁹⁹TI

¹⁹⁷Au(α,2n)¹⁹⁹TI at 24 MeV beam energy

8 HPGe and 5 LaBr₃:Ce detectors

If these states have pure single-particle configurations, one expects lifetime of several hundreds of picoseconds for the 367 keV level

Lifetime of the 367 keV level

Lifetime of the 367 keV level

"Low-recoil" DSAM in (α,n) reactions

Advantages:

- clean spectra
- large cross-sections
 non-yrast states are
 reasonably well populated

Difficulties:

- low recoil velocity v/c~0.3%
- nuclear stopping power becomes important
- short cascades, feeding should be parameterized

¹¹⁹Sn(α ,n)¹²²Te E_{α} = 15 MeV

C. Mihai, A.A. Pasternak et al, Phys. Rev. C 81 034314(2010)

Side-feeding estimate

10

8

6

4

2

0

0

2

¹¹⁹Sn(α,n)¹²²Te

0,001 0,01

0,1

0,5

14

12

E=15 MeV, thick target

10

Yrast line

8

6

I, ħ

I, ħ

E*, MeV

Side-feeding model :

E. Grodner, A.A. Pasternak et al. Eur. Phys J. A27 (2006) 325

The population of discrete levels from the entry point proceeds mainly through fast E1 transitions

Lineshape fit, consistency checks

Consistency checks were done using lifetimes measured in an (n,n') reaction, where the feeding is negligible

¹¹⁸Te results

8 lifetimes and 4 limits were measured, results reported in PRC 83 054310, 2011

¹¹⁸Te results

Plunger experiments

Plunger device was constructed in collaboration with IKP Köln

```
 <sup>76</sup>Ge(<sup>13</sup>C,4n) <sup>85</sup>Sr @56 MeV
 0.4 mg/cm<sup>2</sup> <sup>76</sup>GeO<sub>2</sub> on
 1mg/cm<sup>2</sup> Ta
```


Plunger experiments

Distance [Micrometer]

Thank you for your attention