

Commissioning experiments of the AGATA Demonstrator at LNL.

Francesco Recchia Università di Padova

- □ Week 12: ³⁰Si@70MeV+¹²C
 - Fusion Evaporation
- Week 27: ⁵⁶Fe@220MeV+¹⁹⁷Au
 - Coulomb excitation (DANTE)
- □ Week 43: ³²S@130MeV+¹¹⁰Pd
 - Fusion Evaporation (AGAVA)
- □ Weeks 46 and 49: ⁵⁸Ni+⁹⁶Zr
 - multi-nucleon transfer (PRISMA)

- Week 12 (I): First In-beam test at LNL
- During week 12 (March 16-22) the full system was tested with an in-beam test using the ³⁰Si(70MeV)+¹²C reaction
- □ The system included:
 - PSA and tracking performed in real time (online)
 - Trigger-less mode
- GOALS
 - To test the detector in real experiment conditions
 - DAQ
 - Pre-processing electronics
 - On-line analysis
 - Acquire useful data for off-line optimization of the system

Week 12 (I): The idea

"Standard" experiment: Doppler correction capabilities exploited to measure the position sensitivity

EGAN 2011 Workshop

 No ancillaries have been used
 Measurement performed at 2 target-detector distances

EGAN 2

Week 12 (I): Preliminary Results

adova

P.-A. Soderstrom – PhD thesis - Uppsala University

- COULEX reaction
- ⁵⁶Fe(220 MeV) \rightarrow ¹⁹⁷Au target
- recoil detected using DANTE
- no AGAVA available -> DANTE digitized

Position of interactions in Dante

(e)

197**Au**

Position of interactions in Dante

197Au

56

- $\Box \quad 10 \text{ keV} \rightarrow 7 \text{ keV} \rightarrow 4 \text{ keV}$
- Signal basis and electronic response
 - Pre-amp risetime
 - Differential crosstalk

Week 43 (III): The in-beam test

- ³²S + ¹¹⁰Pd @ 135 MeV
- Data: Singles, Doubles, Triples
- **Thin target (500 \mug/cm²)**
- Thick Target (670 µg/cm²
 + 8 mg Au)
- Fusion Evaporation with CN ¹⁴²Sm
 - ¹³⁸Sm (4n)
 - ¹³⁸Pm (p,3n)

Week 43 (III): The setup

Week 43 (III): Results

Most intense channel: ¹³⁸Sm

Week 43 (III): High multiplicity events

With only 2 ATC (6 HPGe crystals) and γ-ray tracking, high-spin states in ¹³⁸Sm are clearly visible. The performance is actually comparable to conventional arrays with a much larger number of crystals

Week 43 (III): High multiplicity events

EGAN 2011 Workshop

Weeks 46 and 49: ⁵⁸Ni@⁹⁶Zr multinucleon transfer, AGATA+PRISMA

Weeks 46 and 49: PRISMA analysis

Weeks 46 and 49: ⁵⁸Ni+⁹⁶Zr multinucleon transfer, AGATA+PRISMA

EGAN 2011 Workshop

- Week 12: AGATA only
 - Solved issues with software and detector positioning
 - Energy dependence of position resolution
- Week 27: AGATA+DANTE
 - Optimisation of the signal basis
- Week 43: AGATA+Si+LaBr
 - First in-beam test with AGAVA
 - High-multiplicity events ++
- □ Weeks 46 and 49: AGATA+PRISMA
 - Optimisation of the software and DAQ setup for Physics campaign

6 different rates x 4 trapezoid risetime x 6 blr length

Resolution of CC vs rate

Thank you!

Relative efficiency vs Rate

Dead-time from Pile-up rejector and GTS deadtime

Modelization of deadtime

