Response of AGATA detectors to gamma-rays in the energy range up to 15 MeV

Fabio Crespi

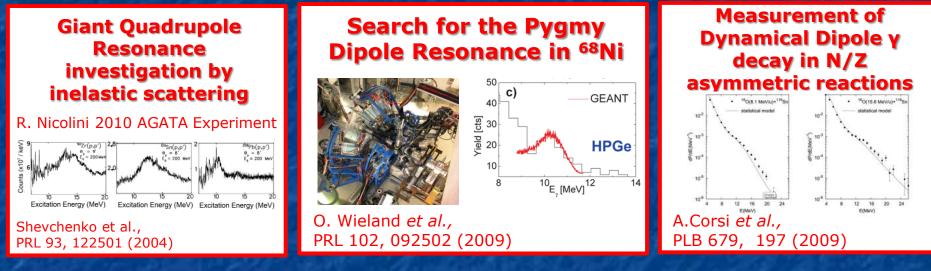
Università degli Studi di Milano - INFN

Outline

Measurement of 15 MeV γ-rays with the AGATA cluster detectors" and Am-Be-Fe Source Data

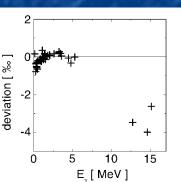
Energy Resolution and Linearity

Multiplicity Distributions(Clusters, Crystals, Segments)

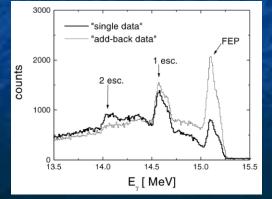

Doppler Correction and Tracking

EGAN 2011 Workshop, 26-30 June 2011, Padova, Italy

Fabio Crespi

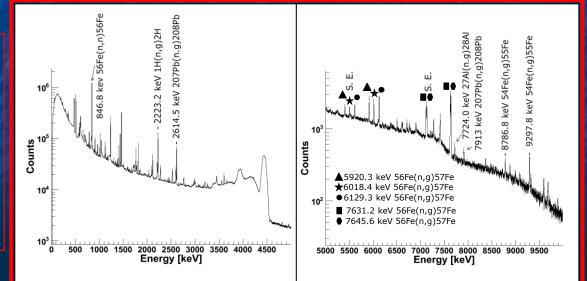

Response of AGATA detectors to high-energy gamma rays

In many in-beam gamma spectroscopy experiments the detection of high-energy gamma rays in the range up to 10-20 MeV is of primary importance, e.g.:


"...experiments requiring the detection of γ -rays in the 10-20 MeV interval with good energy resolution, can benefit from the use of these germanium detectors..." B. Million et al., NIMA 452 (2000) 442

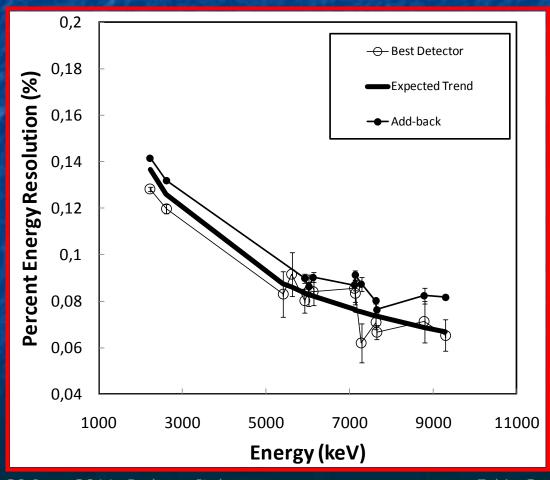
Linearity

Single and Add-back spectra


Response of AGATA detectors to high-energy gamma rays

A measurement of the response to 15.1 MeV gamma rays has been performed using two HPGe triple clusters of the AGATA Demonstrator array, operating at LNL. **15.1 MeV gamma rays are emitted by the 1⁺ -> 0⁺ M1 transition in ¹²C* produced in the <u>reaction</u>:**

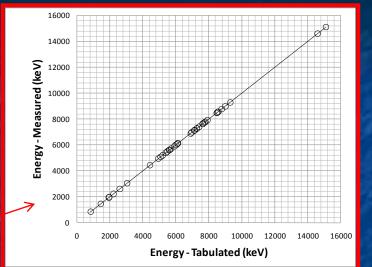
 $D(^{11}B_{,\gamma})^{12}C + n @ E_{beam} = 19.1 MeV$

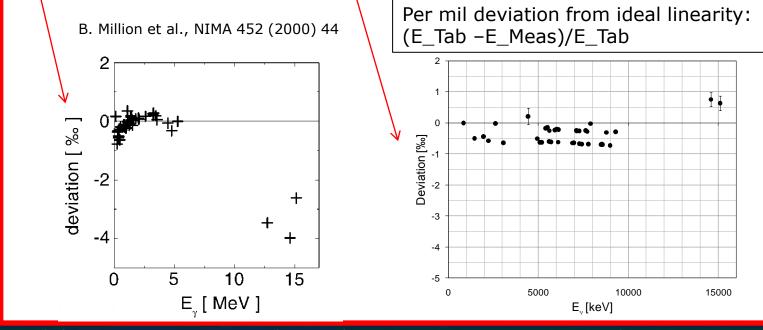

About 23 hours of calibration measurements with an Am-Be-Fe source were carried out. These data allowed a high-energy calibration of the detectors to be made and to check the linearity and the energy resolution of the AGATA detectors up to 9 MeV.

Energy Resolution

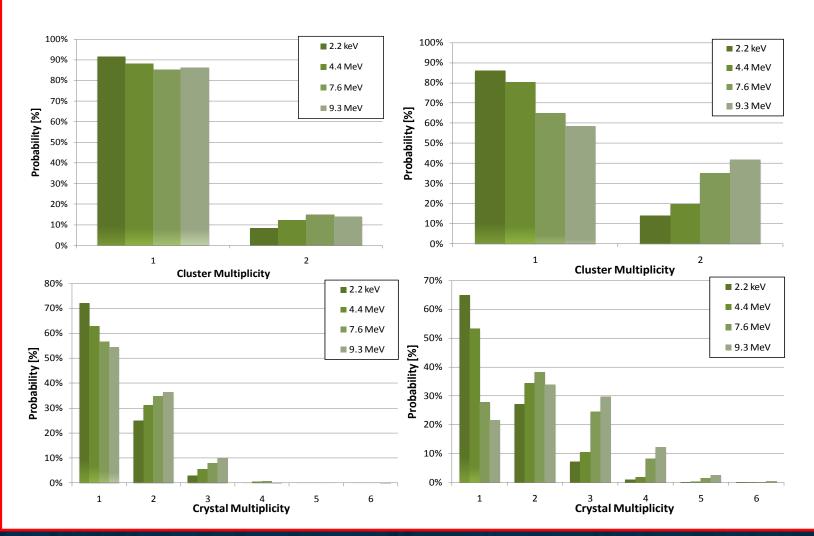
Percent Energy resolution is consistent with expected trend up to 9 MeV (15 MeV gamma cannot be used at this purpose, it is emitted in-flight)

Segments Gain matching is important (for sufficient statistics most energetic hit in one segment spectra are used)

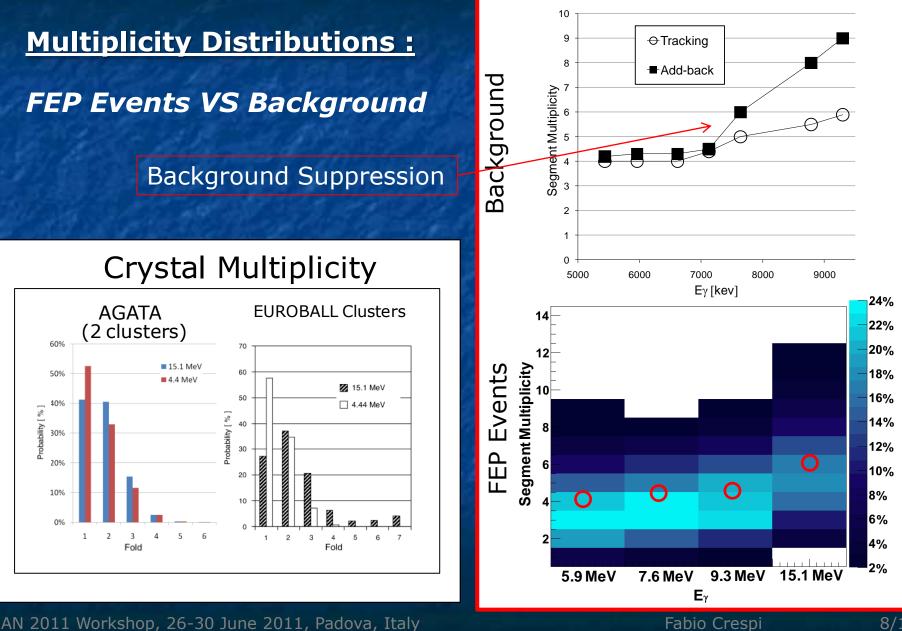



Linearity

Linearity of AGATA detectors checked up to 15 MeV, using both Am-Be-Fe calibration data and the 15.1 MeV gamma from the in-beam test


> EUROBALL Clusters

AGATA


Multiplicity Distributions and Energy Release

FEP Events

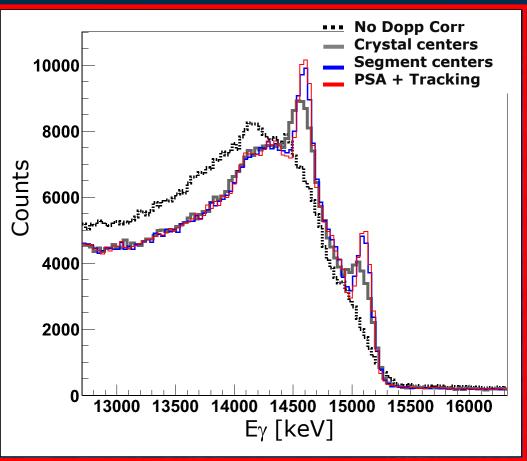
Background

Multiplicity Distributions and Energy Release

EGAN 2011 Workshop, 26-30 June 2011, Padova, Italy

8/12

Multiplicity Distributions and Energy Release



EGAN 2011 Workshop, 26-30 June 2011, Padova, Italy

9/12

Doppler Correction and Tracking

The spectrum obtained without **Doppler correction** (dotted black line) is compared to the one obtained by applying a Doppler correction using only the central position of **the HPGe crystal** with the largest energy deposit (thick gray line), to the one obtained by using the central position of the HPGe **segment** thin blue line) with the largest energy deposit and to the one obtained by using the full information provided by the **PSA and Tracking** (thin red line).

→ Great improvement in Doppler Correction quality using PSA+Tracking (also for high-energy gamma rays)

→ Relatively small improvement between "blue" spectrum and "red" is due to uncertainty in ¹²C ion velocity (not measured). This is also the limiting factor for Doppler Correction.
EGAN 2011 Workshop, 26-30 June 2011, Padova, Italy
Fabio Crespi 10/12

Conclusions and Perspectives

A measurement of the response to 15.1 MeV gamma rays has been performed using the reaction $D({}^{11}B,\gamma){}^{12}C + n @ E_{beam} = 19.1 MeV$ (+ AmBeFe source measurement)

- Energy resolution and Linearity verified up to 9 MeV / 15.1 MeV
- Multiplicity distributions (energy release inside the detector) produced
 - Comparison with EUROBALL clusters case
- Doppler correction performed with 15 MeV gammas using PSA+Tracking \rightarrow Great improvement in Doppler Correction quality

...still work in progress:

Simulation of the experiment

Tracking efficiency VS energy

Collaboration

Measurement of 15 MeV γ rays with the AGATA cluster detectors

F.C.L. Crespi^a, R. Avigo^a, F. Camera^a, G. Benzoni^a, N. Blasi^a, S. Bottoni^a, A. Bracco^a, S. Brambilla^a, P. Casati^a, F. Coniglio^a, A. Corsi^a, A. Giaz^a, S. Leoni^a, B. Million^a, R, Nicolini^a, L. Pellegri^a, V. Vandone^a, O. Wieland^a, S. Akkoyun^f, A. Atac^f, D. Bazzacco^c, M. Bellato^c, D. Bortolato^c, E. Calore^b, M. Ciemala^e, E. Farnea^c, A. Gadea^d, A. Gottardo^c, M. Kmiecik^e, A. Maj^e, D. Mengoni^c, C. Michelagnoli^c, D. Montanari^c, D.R. Napoli^b, J. Nyberg^g, F. Recchia^b, E. Sahin^b, P.-A. Söderström^g, C.A.Ur^c, J.J. Valiente Dobon^b

^a Università degli Studi e INFN sezione di Milano, Via Celoria 16, 20133, Milano, Italy.
 ^b INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy.
 ^c Università di Padova e INFN, sezione di Padova, Padova, Italy.
 ^d IFIC, Valencia, Spain.
 ^e The Niewodniczanski Institute of Nuclear Physics, PAN, Krakow, Poland.

^f Department of Physics, Faculty of Science, Ankara University, Ankara, Turkey.

^g Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.

→ <u>Riccardo Avigo Master Thesis</u>

EGAN 2011 Workshop, 26-30 June 2011, Padova, Italy

Fabio Crespi