

1

Confirmation of the molecular structure of excited bands in ²¹Ne

AGATA with TRACE

Carl Wheldon

School of Physics and Astronomy University of Birmingham

30/06/2011 EGAN2011 Workshop

Mass number

Tunnelling & octupole deformation in ²¹Ne

What makes a rotational band?

Gamma-ray spectroscopist

Enhanced in-band transitions

Rotational energy dependence

In-band branching ratios

Particle spectroscopist

•Common cluster decay widths

Rotational energy dependence

•Decays to similar daughter states

Usually, without the in-band transitions, some degree of uncertainty over band structures remains. This is true for many cluster bands in light nuclei.

Neon-21 is UNIQUE. The structures can be assigned and studied unambiguously. Level lifetimes are known. Need branching ratios.

AGATA-target distance: 155 mm AGATA rate: <10 kHz (validated) Trace rate: <6 kHz (30% validated)

Al absorbers \rightarrow protons > 4 MeV

200 µm/1 mm.

Trigger: γ - γ -Trace

detectors present,

but not in trigger.

Some LaBr

OR

 $\gamma - \gamma - \gamma - \gamma$

Experimental set-up

Experimental set-up

Experiment

- •Five days of beam time.
- •No significant issues; stable beam conditions.
- •Energy and initial efficiency calibration made with ¹⁵²Eu.
- •Due to accelerator problems for making the ⁵⁶Co source,
- still awaiting high-energy efficiency calibration. Source

production, 29th July, followed in August by calibration.

Spectra

Disclaimer: different collection times/runs (near-line analysis)!

Summary

Successful beam time.

Gamma- and particle-coincidences are working

(from near-line analysis).

Aim to measure transition rates via branching ratios.

Final efficiency calibrations to collect.

Collaborators

Birmingham: N. Ashwood, M. Barr, N. Curtis, Tz. Kokalova, J. Malcolm

Krakow: N. Cieplicka

Legnaro: G. De Angelis, D. Bortolato, A. Gottardo, V. Modamio, A. Pipidis, E. Sahin, J.J. Valiente-Dobon

Manchester: D. Cullen

Milano: S. Brambilla, C. Boiano, A. Bracco, S. Leoni, R. Nicolini, S. Riboldi

Padova: D. Bazzacco, E. Farnea, C. Michelagnoli, F. Recchia, C. Ur

UWS: L. Capponi, D. Mengoni

and the AGATA Collaboration.

$^{10}Be(+)$ 4 2 0 -2 y(fm) 2 0 $^{11}Be(-)$ 4 2 0 -22 4 x(fm)

AMD¹

GFMC²

Results from *ab initio* calculations: anti-symmetrised molecular dynamics (AMD) and Green's function Monte Carlo (GFMC).

¹Y. Kanada-En'yo *et al.*, Phys. Rev. C52 (1995) 628. ²R.B. Wiringa et al., Phys. Rev. C62 (2000) 014001.

^{30/06/2011} EGAN2011 Workshop