New particles' masses from transverse mass kinks: The case of Yukawa-unified SUSY GUTs

> Diego Guadagnoli LPT Orsay, Université Paris-Sud XI

Introductory remarks

Exp. determined SM gauge couplings + SM becomes supersymmetric above O(1 TeV)

Couplings numerically unify (w/ remarkable accuracy) at a high scale $M_G \approx O(10^{16} \text{ GeV})$ a (remarkable) coincidence

□ first hint to a larger group embedding the SM one

is very weakly dependent on the details of the SUSY spectrum assumed

- This observed gauge coupling unification
- happens at just the "right" scale M_c :
 - M_G > scale where unacceptably large proton decay is generic
 - M_G < Planck scale, where the calculation wouldn't be trustworthy

SO(10):

GUT groups Simplest simple group where all (15) SM matter fields of generation k nicely fit into a single matter representation: **16**_k

The 16th entry accommodates the right-handed neutrino: $(\nu_R)_k$

The appealing see-saw mechanism can be "built-in" automatically

The presence of SUSY guarantees stability of the ratios:

 $\frac{M_{\rm GUT}}{M_{\rm EW}}$, $\frac{M_{\rm see-saw}}{M_{\rm EW}} \gg 1$ E.

Generic predictions (besides coupling unification):

- **proton decay** [See *e.g.*: Dermisek, Mafi, Raby]
- SUSY between the Fermi and the GUT scale, hence, presumably, TeV-scale sparticles

However, in both cases detailed predictions require further model assumptions.

Are "robust" tests possible?

Looking for further SUSY GUT tests

5

5

Generic predictions (besides coupling unification):

proton decay [See *e.g.*: Dermisek, Mafi, Raby]

SUSY between the Fermi and the GUT scale, hence, presumably, TeV-scale sparticles

Predicted pattern of SUSY masses needs specification of

- the mechanism of SUSY breaking
- the form Yukawa couplings have at the high scale

However, in both cases detailed predictions require further model assumptions.

Are "robust" tests possible?

Looking for further SUSY GUT tests

Generic predictions (besides coupling unification):

proton decay [See *e.g.*: Dermisek, Mafi, Raby]

SUSY between the Fermi and the GUT scale, hence, presumably, TeV-scale sparticles

Predicted pattern of SUSY masses needs specification of

- the mechanism of SUSY breaking
- *the form Yukawa couplings have at the high scale*

Hypothesis:

5

5

Yukawa coupling unification (across each matter multiplet)

- Generically also model-dependent (e.g. threshold corrections, role of higher-dim operators)
- However, for the 3rd generation: $Y_t \simeq Y_b \simeq Y_{\tau} \simeq Y_{\nu}$ it remains an appealing possibility

However, in both cases detailed predictions require further model assumptions.

Are "robust" tests possible?

Note:

Yukawa interactions have dim 4.

It's not unlikely that they preserve info about the symmetries of the UV theory

3rd generation Yukawa unification (YU)

YU depends:

- on tan β being large, O(50).
- 2000 minimum mi Hall, Rattazzi, Sarid – on the details of the SUSY spectrum, since m, receives **EW-scale threshold corrections**, growing with growing $\tan \beta$

How to test YU, if the exact value of m_b depends on the details of the SUSY spectrum?

A ST

generation Yukawa unification (YU) 3rd

YU depends:

- on tan β being large, O(50).
- Hall, Rattazzi, Sarid Mananan mananan and a start of the start of - on the details of the SUSY spectrum, since m, receives **EW-scale threshold corrections, growing with growing tan** β

How to test YU, if the exact value of m depends on the details of the SUSY spectrum?

Turn the argument around

- Assume exact YU \mathbf{N}
- Impose the constraints from the observed top, bottom and tau masses

Learn about the implied GUT-scale parameter space

Assuming universal GUT-scale mass terms for sfermions (m_{16}, A_0) and for gauginos ($m_{_{1/2}}$), one preferred region emerges:

L.J

$$A_0 \approx -2 \, m_{16}$$
, μ , $m_{1/2} \ll m_{16}$

These relations automatically lead to Inverted Scalar Mass Hierarchy

generation Yukawa unification (YU)

YU depends:

- on tan β being large, O(50).
- . Hall, Ratta≳≥i, Sarid The and the second s - on the details of the SUSY spectrum, since m, receives **EW-scale threshold corrections, growing with growing tan** β

Blazek, Dermisek, Raby

How to test YU. if the exact value of m depends on the details of the SUSY spectrum?

Turn the argument around

- Assume exact YU
- Impose the constraints from the observed top, bottom and tau masses

Learn about the implied GUT-scale parameter space

Assuming universal GUT-scale mass terms for sfermions (m_{1}, A_{0}) and for gauginos $(m_{1/2})$, one preferred region emerges:

$$A_0 \approx -2 \, m_{16}$$
, μ , $m_{1/2} \ll m_{16}$

These relations automatically lead to Inverted Scalar Mass Hierarchy

Concrete example Dermisek+Raby SO(10) SUSY GUT with a D₃ family symmetry

Successfully describes EWPO, \mathbf{N} guark and lepton masses, CKM, PMNS.

Can one perform a deeper test of the model?

Since YU is sensitive to the whole SUSY spectrum,

to really test YU one needs additional observables. able to constrain the spectrum itself

D. Guadagnoli, SUSY GUTs with YU

The two crucial FCNCs: $B_{s} \rightarrow \mu^{+}\mu^{-}$ and $B \rightarrow X_{s} \gamma$

A generic expectation in YU is large $\tan\beta$ \Rightarrow All the FCNCs need to be computed in the MSSM with large $\tan\beta$

The two crucial FCNCs: $B_{s} \rightarrow \mu^{+}\mu^{-}$ and $B \rightarrow X_{s} \gamma$

A generic expectation in YU is large $\tan\beta$ \Rightarrow All the FCNCs need to be computed in the MSSM with large $\tan\beta$

$\checkmark BR[B \rightarrow X_s \gamma] \text{ [continued]}$

Very rough formula $\Gamma[B \to X_{s} \gamma] \approx \frac{G_{F}^{2} \alpha_{e.m.}}{32 \pi^{4}} |V_{ts}^{*} V_{tb}|^{2} m_{b}^{5} (|C_{7}^{\text{eff}}(\mu_{b})|^{2} + ...)$ New contribution and Higgses. with $C_{7}^{\text{eff}}(\mu_{b}) = C_{7,\text{SM}}^{\text{eff}}(\mu_{b}) + C_{7,\text{NP}}(\mu_{b})$

New contributions come mainly from charginos and Higgses. Gluinos play here a minor role

$$C_{7,\text{NP}}(\mu_b) \simeq C_7^{\tilde{\chi}^+}(\mu_b) + C_7^{H^+}(\mu_b)$$

 $\mathbf{\nabla} \ \mathbf{BR}[\mathbf{B} \to X_s \boldsymbol{\gamma}] \quad [\text{continued}]$

Very rough formula $\Gamma[B \to X_s \gamma] \approx \frac{G_F^2 \alpha_{\text{e.m.}}}{32 \pi^4} |V_{ts}^* V_{tb}|^2 m_b^5 (|C_7^{\text{eff}}(\mu_b)|^2 + ...)$ with $C_7^{\text{eff}}(\mu_b) = C_{7,\text{SM}}^{\text{eff}}(\mu_b) + C_{7,\text{NP}}(\mu_b)$

New contributions come mainly from charginos and Higgses. Gluinos play here a minor role

$$C_{7,NP}(\mu_b) \simeq C_7^{\tilde{\chi}^+}(\mu_b) + C_7^{H^+}(\mu_b)$$

Main features

• Contributions from charginos are the dominant ones, and behave like

$$C_7^{\tilde{\chi}^+} \propto + \mu A_t \tan \beta \times \operatorname{sign}(C_7^{\mathrm{SM}})$$

In our case, $\mu \cdot A_t < 0 \implies$

large, negative, chargino contribs.

 \checkmark BR[$B \rightarrow X_s \gamma$] [continued]

The technique discussed – a global fit to 3rd generation masses, EW observables and FCNCs – can be used to test <u>different realizations</u> of Yukawa-unified SUSY GUTs

Different realizations =

different choices for the pattern of soft SUSY-breaking terms at the GUT scale.

The technique discussed – a global fit to 3rd generation masses, EW observables and FCNCs – can be used to test <u>different realizations</u> of Yukawa-unified SUSY GUTs

Different realizations =

different choices for the pattern of soft SUSY-breaking terms at the GUT scale.

We focussed on two main scenarios:

GUT-scale soft terms inheriting from the Yukawa couplings (Minimal Flavor Violating). In particular: split trilinear soft terms

Both scenarios are relatively simple to handle in a fitting procedure, and the second scenario is also quite plausible.

Scenarios consider	ed ① SUSY GUTs with YU and universal GUT-scale soft terms
Assumptions here:	Soft terms consist of a universal bilinear (m_{16}) , a universal trilinear (A_o) , a universal gaugino mass $(m_{1/2})$ and split soft terms for the Higgses (m_{Hu}, m_{Ho})

Assumptions here: Soft terms consist of a universal bilinear (m_{16}) , a universal trilinear (A_0) , a universal gaugino mass $(m_{1/2})$ and split soft terms for the Higgses (m_{H_u}, m_{H_0})

Features/Issues

The combined **info from FCNCs** (in particular $B \rightarrow X_s \gamma$ and $B_s \rightarrow \mu^+ \mu^-$) **favors** <u>values of tan</u> β <u>lower than O(50)</u>

Conversely, it is known that m_b prefers tan β O(50) (or else, tan β close to 1, excluded by LEP)

Scenario 1 is viable only by advocating partial decoupling of the sfermion spectrum, the lightest mass exceeding 1 TeV

Assumptions here: Soft terms consist of a universal bilinear (m_{16}) , a universal trilinear (A_0) , a universal gaugino mass ($m_{_{1/2}}$) and split soft terms for the Higgses ($m_{_{Hu}}$, $m_{_{Hd}}$)

Soft terms are <u>functions</u> of the Yukawa couplings: Yukawa's are the only spurions of the broken flavor symmetry

$$\begin{split} m_{Q}^{2} &= \overline{m}_{Q}^{2} (1_{3 \times 3} + c_{Q}^{u} Y_{U} Y_{U}^{+} + c_{Q}^{d} Y_{D} Y_{D}^{+} + O(Y_{U,D}^{4})) \\ m_{U}^{2} &= \overline{m}_{U}^{2} (1_{3 \times 3} + c_{U}^{u} Y_{U}^{+} Y_{U} + O(Y_{U}^{4})) \\ m_{D}^{2} &= \overline{m}_{D}^{2} (1_{3 \times 3} + c_{D}^{d} Y_{D}^{+} Y_{D} + O(Y_{D}^{4})) \\ A_{U} &= \overline{A}_{U} Y_{U} (1_{3 \times 3} + O(Y_{D}^{2})) \\ A_{D} &= \overline{A}_{D} Y_{D} (1_{3 \times 3} + O(Y_{U}^{2})) \end{split}$$

The YU hypothesis and the hierarchical structure of the Yukawa couplings allow to drastically simplify the previous expansions.

Soft terms in the previous expansions are in fact easily seen to fulfill the approximate patterns

$$m_{Q,U,D}^{2} \simeq \begin{pmatrix} \overline{m}_{Q,U,D}^{2} & 0 & 0 \\ 0 & \overline{m}_{Q,U,D}^{2} & 0 \\ 0 & 0 & \overline{m}_{Q,U,D}^{2} + \Delta m_{Q,U,D}^{2} \end{pmatrix}, \quad A_{U(D)} \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{t(b)} \overline{A}_{U(D)} \end{pmatrix}$$
valid up to terms of order $(Y_{U(D)}^{2})_{ij}/y_{33}^{2}$

The YU hypothesis and the hierarchical structure of the Yukawa couplings allow to drastically simplify the previous expansions.

Soft terms in the previous expansions are in fact easily seen to fulfill the approximate patterns

$$\begin{split} m_{Q,U,D}^2 \simeq \begin{pmatrix} \overline{m}_{Q,U,D}^2 & 0 & 0 \\ 0 & \overline{m}_{Q,U,D}^2 & 0 \\ 0 & 0 & \overline{m}_{Q,U,D}^2 + \Delta m_{Q,U,D}^2 \end{pmatrix}, \quad A_{U(D)} \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{t(b)} \overline{A}_{U(D)} \end{pmatrix} \\ & \text{valid up to terms of} \\ \text{order } (Y_{U(D)}^2)_{ij} / y_{33}^2 \end{split}$$

We will focus on the case of trilinear splittings

- bilinear splittings have already been (partly) explored, and look only partly promising
- our initial X² explorations with all the splittings allowed pointed mostly to trilinear splittings

Scenarios considered

Assumptions here: With respect to scenario 1, trilinears are allowed to be split: A_U , A_D (In principle also bilinears, e.g. between the Q, U, D multiplets, but fits indicate a marginal impact)

Scenarios considered

Assumptions here: With respect to scenario 1, trilinears are allowed to be split: A_U , A_D (In principle also bilinears, e.g. between the Q, U, D multiplets, but fits indicate a marginal impact)

Features/Issues

Agreement with data clearly selects the region with large $\mu = O(m_{16})$ and sizable $A_{\mu} - A_{p}$ splitting

In this region:

The lightest (RH) stop (and the gluino) are required to be very close to their exp bounds, i.e. are veeery light.

All the FCNC tensions are relieved.

Scenarios considered

 \overline{A}_D (TeV)

Assumptions here: With respect to scenario 1, trilinears are allowed to be split: A_U , A_D (In principle also bilinears, e.g. between the Q, U, D multiplets, but fits indicate a marginal impact)

Features/Issues

Agreement with data clearly selects the region with large $\mu = O(m_{16})$ and sizable $A_{\mu} - A_{\rho}$ splitting

In this region:

The lightest (RH) stop (and the gluino) are required to be very close to their exp bounds, i.e. are veeery light.

All the FCNC tensions are relieved.

So, substantial improvement on the fine tuning on the above quantities.

Price: achieving EWSB with precisely the right value of M_z does require increased fine tuning, because of the large μ

Again, spectrum predictions are robust

<i>" Upon discovery of new particles,</i>
the first fundamental question to ask
is what is the mass of these particles "

Spectrum predictions						
scenario 1		sce	enario 2			
M_{h^0}	121	M_{h^0}	126			
M_{H^0}	585	M_{H^0}	1109			
M_A	586	M_A	1114			
M_{H^+}	599	M_{H^+}	1115			
$m_{\tilde{t}_1}$	783	$M_{\tilde{t}_1}$	192			
$m_{\tilde{t}_2}$	1728	$m_{\tilde{t}_2}$	2656			
$m_{\tilde{b}_1}$	1695	$m_{\tilde{b}_1}$	2634			
$m_{\tilde{b}_2}$	2378	$m_{\tilde{b}_2}$	3759			
$m_{\tilde{\tau}_1}$	3297	$m_{\tilde{\tau}_1}$	3489			
$m_{\tilde{\chi}_1^0}$	59	$m_{\tilde{\chi}_1^0}$	53			
$m_{\tilde{\chi}_2^0}$	118	$m_{\tilde{\chi}_2^0}$	104			
$m_{\tilde{\chi}^+}$	117	$m_{\tilde{\chi}_{i}^{+}}$	104			
$M_{\tilde{g}}^{2}$	470	$M_{\tilde{g}}^{\gamma_1}$	399			

• Main difference: a stop respectively lighter and heavier than the gluino

" Upon discovery of new particles, the first fundamental question to ask is what is the mass of these particles "

		Spectrum	n predictio	ns		
scenario 1		nario 1	o 1 scenario 2		 Main difference: a stop respectively lighter ar 	lighter and
	M_{h^0}	121	M_{h^0}	126	neavier than the gluino	
	M_{H^0}	585	M_{H^0}	1109		
	M_A	586	M_A	1114	For neutralino1,2 and chargino1 and basicall	у
	M_{H^+}	599	M_{H^+}	1115	also the gluino, predictions are the same.	
	$m_{\tilde{t}_1}$	783	$M_{\tilde{t}_1}$	192		
	$m_{\tilde{t}_2}$	1728	$m_{\tilde{t}_2}$	2656	,	
	$m_{\tilde{b}_1}$	1695	$m_{\tilde{b}_1}$	2634		
	$m_{\tilde{b}_2}$	2378	$m_{\tilde{b}_2}$	3759		
	$m_{\tilde{\tau}_1}$	3297	$m_{\tilde{\tau}_1}$	3489		
	$m_{\tilde{\chi}_1^0}$	59	$m_{\tilde{\chi}_1^0}$	53		
	$m_{\tilde{\chi}^0_2}$	118	$m_{\tilde{\chi}^0_2}$	104		
	$m_{\tilde{\chi}_1^+}$	117	$m_{\tilde{\chi}_1^+}$	104		
	$M_{\tilde{g}}$	470	$M_{\tilde{g}}$	399		

Spectrum predictions					
sce	enario 1	sce	nario 2		
M_{h^0}	121	M_{h^0}	126		
M_{H^0}	585	M_{H^0}	1109		
M_A	586	M_A	1114		
M_{H^+}	599	M_{H^+}	1115		
$m_{\tilde{t}_1}$	783	$M_{\tilde{t}_1}$	192		
$m_{\tilde{t}_2}$	1728	$m_{\tilde{t}_2}$	2656		
$m_{\tilde{b}_1}$	1695	$m_{\tilde{b}_1}$	2634		
$m_{\tilde{b}_2}$	2378	$m_{\tilde{b}_2}$	3759		
$m_{\tilde{\tau}_1}$	3297	$m_{\tilde{\tau}_1}$	3489		
$m_{\tilde{\chi}_1^0}$	59	$m_{\tilde{\chi}_1^0}$	53		
$m_{\tilde{\chi}_2^0}$	118	$m_{\tilde{\chi}^0_2}$	104		
$m_{\tilde{\chi}^+}$	117	$m_{\tilde{\chi}_{i}^{+}}$	104		
$M_{\tilde{g}}^{\gamma_1}$	470	$M_{\tilde{g}}^{\gamma_1}$	399		

" Upon discovery of new particles, the first fundamental question to ask is what is the mass of these particles "

- Main difference: a stop respectively lighter and heavier than the gluino
- For neutralino1,2 and chargino1 and basically also the gluino, predictions are the same.
- **gluino-gluino** production is substantial in both scenarios (60 vs. 40%)
- stop1 stop1 production is also large (40% !) in scenario 2 (and basically zero in the other)
- chargino1 neutralino2 associated production is also interesting in both scenarios (25 vs. 10%)

" Upon discovery of new particles, the first fundamental question to ask is what is the mass of these particles "

	Spectrum	prediction	าร		
scenario 1		enario 1 scenario 2			 Main difference: a stop respectively lighter and begin in the alwing
M_{h^0}	121	M_{h^0}	126		neavier than the gluino
M_{H^0}	585	M_{H^0}	1109		
M_A	586	M_A	1114		For neutralino1,2 and chargino1 and basically
M_{H^+}	599	M_{H^+}	1115		also the gluino, predictions are the same.
$m_{\tilde{t}_1}$	783	$M_{\tilde{t}_1}$	192		
$m_{\tilde{t}_2}$	1728	$m_{\tilde{t}_2}$	2656		• gluino-gluino production is substantial in both
$m_{\tilde{b}_1}$	1695	$m_{\tilde{b}_1}$	2634		scenarios (60 vs. 40%)
$m_{\tilde{b}_2}$	2378	$m_{\tilde{b}_2}$	3759		
$m_{\tilde{\tau}_1}$	3297	$m_{\tilde{\tau}_1}$	3489		• stop1 – stop1 production is also large (40% !)
$m_{\tilde{\chi}_1^0}$	59	$m_{ ilde{\chi}_1^0}$	53		in scenario 2 (and basically zero in the other)
$m_{\tilde{\chi}^0_2}$	118	$m_{\tilde{\chi}^0_2}$	104		
$m_{\tilde{\chi}_1^+}$	117	$m_{\tilde{\chi}_1^+}$	104	•	• chargino1 – neutralino2 associated production
$M_{\tilde{g}}$	470	$M_{\tilde{g}}$	399		is also interesting in both scenarios (25 vs. 10%)

A suitable mass-determination strategy should be able to determine the masses of all the light gauginos and, for scenario 2, of the stop1 as well.

Can one construct such a strategy ?

Would it realistically work on LHC data ?

Note: gluino and (for scenario 2) stop1 are light, hence one can expect 2- or 3-steps decay chains: *short decay chains*

determination of the gluino, chargino1, neutralino1,2 and stop1 masses within scenario 2 Choi, DG, Im, Park, 2010

Step (1)

Construct $M_{_{T2}}$ for $\tilde{g} - \tilde{g}$ production followed by the decay

- In about 100/fb of data, one expects around 1.1 million such events
- The alternative channel with $\tilde{X}_1^{\pm} \rightarrow \tilde{X}_1^0 q q'$ (where namely only the \tilde{X}_1^0 is invisible) is affected by a much larger combinatoric error

determination of the gluino, chargino1, neutralino1,2 and stop1 masses within scenario 2 ^{Trom} Choi, DG, Im, Park, 2010

Step ()

Construct $M_{_{T2}}$ for $\tilde{g} - \tilde{g}$ production followed by the decay

Trigger on 2 W + 4 b + 2 ℓ + missing p_{T}

Apply suitable kinematical cuts on the event sample

In the construction of M_{T2} , include the whole \tilde{X}_1^{\pm} initiated decay chain in the missing p_T

- In about 100/fb of data, one expects around 1.1 million such events
- The alternative channel with $\tilde{X}_1^{\pm} \rightarrow \tilde{X}_1^0 q q'$ (where namely only the \tilde{X}_1^0 is invisible) is affected by a much larger combinatoric error

determination of the gluino, chargino1, neutralino1,2 and stop1 masses within scenario 2 Choi, DG, Im, Park, 2010

Step (1)

Construct $M_{_{T2}}$ for $\tilde{g} - \tilde{g}$ production followed by the decay

- In about 100/fb of data, one expects around 1.1 million such events
- The alternative channel with $\tilde{X}_1^{\pm} \rightarrow \tilde{X}_1^{0} q q'$ (where namely only the $\tilde{\chi}_1^0$ is invisible) is affected by a much larger combinatoric error

The kink location allows to determine simultaneously the gluino and chargino1 masses:

$$m_{\tilde{g}} = 395(16) \text{ GeV}, \ m_{\tilde{\chi}_1^{\pm}} = 109(17) \text{ GeV}$$

Application example: continued

Step (2)

Consider $\tilde{t}_1 - \tilde{t}_1$ production, followed by the decay

Application example: continued

Step (2)

Consider $\tilde{t}_1 - \tilde{t}_1$ production, followed by the decay

Step ③

Finally, consider $\tilde{\chi_2^{\ 0}}-\tilde{\chi_1^{\ \pm}}$ associated production, followed by

Conclusions

- Within SUSY GUTs with Yukawa unification, we have considered two representative scenarios – both experimentally viable, but with important differences in the SUSY spectrum and decay modes.
- For these scenarios, we have addressed the question to which extent is it possible to determine the lightest part of the SUSY spectrum at the LHC.

Conclusions

- Within SUSY GUTs with Yukawa unification, we have considered two representative scenarios – both experimentally viable, but with important differences in the SUSY spectrum and decay modes.
- For these scenarios, we have addressed the question to which extent is it possible to determine the lightest part of the SUSY spectrum at the LHC.
- The event topologies of interest are characterized by **short decay chains**. **This suggests** M_{τ_2} **variables** as the most promising quantities for our problem.
- We have elaborated a stategy based on M_{T2} and studied it on 100/fb of data of 14 TeV LHC collisions. We included hadronization / detector-level effect with Pythia / PGS.
- We showed this strategy to be able to **determine**, within about 20 GeV, the masses of all the light gauginos (neutralino1,2, chargino1, gluino) and also the mass of the lightest stop (for the scenario where it is below the gluino).

Spare Slides

so that the mechanism has to be tamed somehow.