

Il futuro della fisica delle particelle e il Bosone di Higgs

Barbara Mele

* very exciting (and challenging)
time for particle physics !

* Theory : present status

***** Experiments : main strategies

* quite a few great options for "beyond HL-LHC" Physics !

* a few (personal) remarks

WHERE ARE WE ?

- * Higgs boson (the last piece of the SM) found !
- huge amount of LHC data fits SM predictions with amazing (unplanned) level of accuracy

nevertheless...

great (although hazy) expectations for new BSM phenomena at colliders !

* two kinds of issues with the SM :

* existence of "external" phenomena :

what's so problematic about the Higgs (TH)

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - V(\phi^{\dagger}\phi) - \bar{\psi}_{L}\Gamma\psi_{R}\phi - \bar{\psi}_{R}\Gamma^{\dagger}\psi_{L}\phi^{\dagger}$$
$$V(\phi^{\dagger}\phi) = -\mu^{2}\phi^{\dagger}\phi + \frac{1}{2}\lambda(\phi^{\dagger}\phi)^{2}$$
$$m_{H}^{2} = 2\mu^{2} = 2\lambda v^{2}$$

***** the only "fundamental" scalar particle (microscopic interpretation ?)

- ★ not protected by symmetries (the less constrained SM sector):
 ★ naturalness problem : m_H ~ g × Λ_{cutoff}
 ★ many different couplings all fixed by masses (?)
 ★ proliferation of parameters historically leads to breakdown in TH models
- fermion masses/Yukawa's hierarchy (?)
 - * have neutrinos a special role ?!!!
- \Rightarrow λ determines shape and evolution of Higgs potential \Rightarrow cosmology !

what's so problematic about the Higgs (EXP)

very challenging experimental studies in general
 tiny x-sections in direct production from light states
 must excite heavy states (t,W,Z) radiating Higgs
 small cross sections > harsh separation from backgrounds

the measured (and unpredicted) m_H value comes as a bonus, since it opens many explorable decay channels (with relatively unsuppressed production x-sections)

a comment on Naturalness

***** the naturalness/hierarchy problem is a robust one !

★ one might say : SM theory is self-consistent by itself
→ it is a complete framework !

***** BUT :

* "external" phenomena unavoidably introduces extra M scales (M_{pl}, ...)

renormalizable,

UV-complete

- ★ in a unified description this inevitably drives the Higgs-mass scale up to the extra M scales well above observed m_H value,
- ★ generating puzzling mass hierarchies (many many orders of magnitude for "desert" hypothesis up to M_{pl} or so)
- * typical of fundamental scalar fields !

LHC is just the right machine to explore this issue !

theorists suggested a few elegant paths to solve m_H hierarchy look for new heavy (~1TeV) states predicted in :

- **\$** SUSY (particularly far-reaching)
- * Composite Higgs
- * Extra Dims ...

***** on the other hand :

- * LHC already excluded their minimal versions
- but minimal versions not well motivated if not by allowing manageable predictions of new models that in general involve a large number of new parameters (>100 for MSSM !)
- * Nature might well have chosen different paths than the theorists' ones to solve the hierarchy problem

* relevant new energy scale must anyway be connected to m_H !

presently four strategies to advance in HEP at colliders

* by exploring the characteristics of the Higgs sector and confirming/spoiling the SM picture (primary relevance since the Higgs sector is so critical !)

- ***** by exploring the characteristics of the Higgs sector and confirming/spoiling the SM picture (primary relevance since the Higgs sector is so critical !)
- ***** by searching for new heavy states coupled to the SM, [acting as a cut-off for the SM possibly solving the naturalness issues and/or non-SM phenomena (dark matter, ...)]

- ***** by exploring the characteristics of the Higgs sector and confirming/spoiling the SM picture (primary relevance since the Higgs sector is so critical !)
- by searching for new heavy states coupled to the SM, [acting as a cut-off for the SM possibly solving the naturalness issues and/or non-SM phenomena (dark matter, ...)]
- ★ by exploring ∧ >> o(1TeV) indirect effects through high-accuracy studies of SM x-sections/distributions and searches for rare processes (EFT parametrization)

- ***** by exploring the characteristics of the Higgs sector and confirming/spoiling the SM picture (primary relevance since the Higgs sector is so critical !)
- ***** by searching for new heavy states coupled to the SM, [acting as a cut-off for the SM possibly solving the naturalness issues and/or non-SM phenomena (dark matter, ...)]
- ★ by exploring ∧ >> o(1TeV) indirect effects through high-accuracy studies of SM x-sections/distributions and searches for rare processes (EFT parametrization)
- by looking for new "DARK" states (i.e., uncoupled to SM at tree level) either in production or/and heavy-state (H,top...) decays (elusive signatures, may be long-lived p.les)

every single method is of fundamental importance to make progress !

(unplanned !) EW precision at LHC !

if new physics is heavy \longrightarrow model independent way to probe BSM couplings ! $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + \sum \frac{c_i}{\Lambda^4} \mathcal{O}_i^{d=8} + \dots$ BSM effects SM particles

* deviations (δ) from SM via $O_i^{d=6}$ can grow with energy : amplitudes ratio: $rac{\mathcal{A}_{\mathrm{SM}+\mathrm{BSM}}}{\mathcal{A}_{\mathrm{SM}}} \sim 1 + rac{E^2}{\Lambda^2}$ enters SM-BSM interference terms !! * LHC can match LEP sensitivity by looking at larger (< Λ) Energy !!! then, $\delta \sim 0.1\%$ at $E_{LEP} \sim 100 \text{ GeV}$ matches $\delta \sim 10\%$ at $E_{LHC} \sim 1$ TeV

Higgs distribut.s as lever arm on BSM effects

***** in inclusive production :

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + \sum_{i} \frac{c_i}{\Lambda^4} \mathcal{O}_i^{d=8} + \dots$$

BSM effects SM particles

- $\delta \kappa_i = \delta g_{Hii}/g_{SM} \sim (v/\Lambda)^2 \sim 6\% (TeV/\Lambda)^2$ ~ 1% for Λ~ 2.5 TeV
- * at large momentum transfer $O_i^{d=6}$ may induce a grow:
 - δ [dσ/dp_T] / [SM] ~ (p_T/Λ)²
 - ~ 16% at p_T ~ 1TeV for Λ~ 2.5 TeV

kinematic features can probe same Λ scales as inclusive ones requiring smaller accuracy !

Barbara Mele

WHAT after HL-LHC ???

★ e⁺e⁻ colliders great opportunities in all sectors (cleanness [→ model independence], accuracy...)

* focus on e⁺e⁻ Higgs factories

general consensus by now on next machine

Snowmass summary on expected $\delta g_{Hii}/g_{SM}$

assume we find a deviation in H couplings...

Deviation from SM: δ ~ v²/M²
 M scale of new physics
 M ~ 1 − 10 TeV → δ ~ 6 − 0.06%

in order to figure out what's going on we will nee an energy-frontier facility to explore the corresponding M scale in a direct way.

R&D for future high-energy colliders (new techno hadron collider beyond LHC ? higher energy linear collider ? multi-TeV muon c plasma acceleration ?

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power	Cost	
					[MW] L	_HC → 150 MW, 4 GCHF	
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade	
ESPP20	20	0.5	4	10	163 (204)	7.8 GILCU	
		1.0			300	?	
CLIC	ee	0.38	1	8	168	5.9 GCHF	
		1.5	2.5	7	(370)	+5.1 GCHF	
		3	5	8	(590)	+7.3 GCHF	
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$	
		0.24	5.6	7	266		
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF	
		0.24	5	3	282		
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF	
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF	
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)	
HE-LHC	рр	27	20	20		7.2 GCHF	

.

updated list after Snowmass discussion (2022)

timelines

Higgs-boson factories (up to 1 TeV c.o.m. energy)

Snowmass 2021: EF Benchmark Scenarios

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start Date	
			e^-/e^+	$\mathrm{ab}^{-1}~/\mathrm{IP}$	Const.	Physics
HL-LHC	pp	14 TeV		3		2027
ILC & C^3	ee	$250 {\rm GeV}$	$\pm 80/\pm 30$	2	2028	2038
		$350 { m GeV}$	$\pm 80/\pm 30$	0.2		
		$500 {\rm GeV}$	$\pm 80/\pm 30$	4		
		$1 { m TeV}$	$\pm 80/\pm 20$	8		
CLIC	ee	380 GeV	$\pm 80/0$	1	2041	2048
CEPC	ee	M_Z		50	2026	2035
		$2M_W$		3		
		$240 {\rm GeV}$		10		
		$360 {\rm GeV}$		0.5		
FCC-ee	ee	M_Z		75	2033	2048
		$2M_W$		5		
		$240 {\rm GeV}$		2.5		
		$2 M_{top}$		0.8		
μ -collider	μμ	125 GeV	n an	0.02		

Multi-TeV colliders

(> 1 TeV c.o.m. energy)

timelines

Collider	Type	\sqrt{s} $\mathcal{P}[\%]$		$\mathcal{L}_{ ext{int}}$	Start Date	
			. e^{-}/e^{+}	$\mathrm{ab}^{-1}/\mathrm{IP}$	Const.	Physics
HE-LHC	pp	$27 { m TeV}$		15		
FCC-hh	pp	100 TeV		30	2063	2074
SppC	pp	75-125 TeV		10-20		2055
LHeC	ер	1.3 TeV		1		
FCC-eh	8	$3.5 \mathrm{TeV}$		2		
CLIC	ee	$1.5 \mathrm{TeV}$	$\pm 80/0$	2.5	2052	2058
		$3.0 \mathrm{TeV}$	$\pm 80/0$	5		
μ -collider	$\mu\mu$	3 TeV	en an anna 1890 an an an Anna Frains	1	2038	2045
		10 TeV		10		

Timelines are taken from the ITF report (AF)

new entries

how to assess a large-scale project

project —>>> [beam species, energy, lumi, technology]

Physics potential (direct, indirect)

(mainly discussed here)

- ★ feasibility → maturity → technical risk
- ***** innovation
- ***** construction/operation costs (vs constrains from fund. agencies)
- ***** power consumption
- ***** start-up time
- ***** total operation time (staging, expandibility)
- * location vs infrastructures vs politics (global context !)
- ***** HEP (both regional and global) community support
- ***** fraction of present HEP community involved

Physics potential (direct, indirect)

- **★** feasibility → maturity →
- ***** innovation
- * construction/operc
- * power consump
- 🗱 start-up †
- * total c (staging, expandibility)

onstrains from fund. agencies)

structures vs politics (global context !)

zgional and global) community support

of present HEP community involved

01

X

Higgs & Fichi, 29 September 2022

Jussed here

Probes and Signatures of new physics at colliders

With such an exciting and vast landscape of possibilities, the **breadth of the experimental program** is of paramount importance

Pagan Griso, Snowmass 2022

Colliders offer the unique ability to probe, with a single experimental setup, all sectors of the SM and its extensions

Higgs is a fantastic probe to unravel current HEP mysteries!

Barbara Mele