

IBL Italia

3D-FBK silicon sensors: Test Beam results 2010

Andrea Micelli, Marina Cobal, Mario Paolo Giordani

INFN and University of Udine

- Introduction
 3D Sensors Design and Technology
- List of devices
- Test Beam setups IBL test Beam at CERN Test beam and lab measurements at CERN Lab measurements at Genoa after-irradiation
- Summary and Outlook

3D Sensors Design and Technology

Modified 3D sensors

3E cell configuration

Parameter	Unit	Value	
		3D-DTC-2	
Substrate thickness	μm	200	
Junction column thickness	μm	100 -110	
Ohmic column thickness	μm	180 -190	
Column overlap	μm	90 - 100	
Substrate doping concentration	cm ⁻³	1 × 10 ¹²	
Lateral depletion voltage	v	3	
Full depletion voltage	v	12	
Capacitance vs backplane	fF/column	35	
Leakage current @ Full depletion	pA/column	< 1	
Breakdown voltage	v	> 70	

List of characterized devices

ID on Wafer	ID FE-I3	Sensor Type	V_bd	Irrad.	Working?	Comments
3	06051	2E	60	3 10e15	Dead	Dead on 25/06/10 during Threshold scan vs HV
17	09051	2E	-	Genova	\odot	
18	05051	2E	50	1 10e15	\odot	
6	/	2E	70	1 10e15	٢	p
7	07051	3E	65	1 10e15	Dead	Dead after Test Beam
9	07052	3E	60	3 10e15	Dead	Dead on 22/06/10 during Calibrations scan
13	08052	3E	60	5 10e15	\odot	Vbias = 80V
7	/	3E	50	1 10e15	\odot	р
12	08051	4E	25	1 10e15	٢	Vbias = 50V
14	09052	4E	60	3 10e15	\odot	
16	05052	4E	65	5 10e15	Dead	Dead after irradiation
9	/	4E	60	1 10e15	\odot	р
2	/	4E	?	2 10e15		р
8	/	4E	?	2 10e15		p

- all fourteen devices from FBK-IRST: tested and qualified in Genoa
- single chip tuned to have:

- Threshold ~ 3200 e⁻, TOT(Q=20ke⁻) = 60 BC

- 7 & 14: sensors tested in the test beam (June no data for 14 since R=1MΩ, usually 20kΩ for others devices), 13 & 14 (Oct-Nov)
- 2 & 8: sensors under test at CERN (plus 6,7,9)

Bonn ATLAS Telescope - Oct 10

- 180 GeV pions from CERN SPS
- 3 planes: two-sided Si micro-strips (50 µm pitch)
- Trigger: two scintillators (+veto)
- Morpurgo dipole magnet (B~1.57 T)
- DUTs: STA-3E, FBK-3/4E (n-irradiated), Atlas Planar (as reference)

Purpose:

sensors performance after irradiation in B-field at different tilt angles (-30° to 30°):
 ➡ tracking efficiency, charge sharing, etc.

EU Detector Telescope - June '10 - Oct, Nov '10 (IBL)

- 120 GeV pions from CERN SPS
- 6 planes: 660k Si pixels (18.4 µm pitch)
- Trigger: four scintillators
- DUTs: STA-3E, SIN, FBK-3/4E (n-irradiated in June, 7-14M, Oct. 13-14M), Atlas planar (as reference)

Purpose:

sensors performance after irradiation at different tilted angles (-25° to 25°):

➡ tracking efficiency, charge sharing, electrode efficiency, etc.

IBL Test beam at CERN

IBL TestBeam: from October 25 to November 08, 2010:

- FBK-3E13M:
 - irradiated 5e15 n_{eq}/cm^2
 - tuned before data-taking (after cooling down)
 - HV = -70V (V_{bd} ~ -80V, $I_{leakage}$ < 4µA)
 - efficiency 84%
- FBK-4E14M:
 - $3e15 n_{eq}/cm^2$
 - same tuning used in Genoa
 - HV = -50V (V_{bd} ~ -60V, $I_{leakage} < 0.1 \mu A$)
 - efficiency 46%
 - removed: efficiency was too low

Temperature:

- $\sim -50^{\circ}$ C (dry ice, Dortmund cooling box)
- non-regulable and value unusually low for FBK (T=-20°) ...

more info: https://twiki.cern.ch/twiki/bin/viewauth/Atlas/IBLTBoct2009

Test beam and lab measurements at CERN

FBK-3E13M (5e15 n_{eq}/cm²):

- Threshold REAL= 2969,04e⁻
- 60 TOT @ 20ke-

FBK-4E14M (3e15 n_{eq}/cm²): - Threshold REAL= 2946,64e⁻ - 60 TOT @ 20ke⁻

Temperature on the NTC : ~ -55/57°C

Test beam and lab measurements at CERN

- Few examples: see module FBK-4E 14M
 - temperature of scans T~ -20°C
- Behavior looks very similar for the same type of devices
- Am²⁴¹ scans to measure charge collection vs bias after irradiation (ToT calibration repeated at every voltage)
- proton irradiated devices collect more charge

3D-DDTC FBK sensors: status and plans

- FBK-4E 14M low efficiency (~46%) first time tested at very low temperature. Before was working properly (lab measurements in Genoa)
- Future: test beam at Desy (16 Feb to March 2) and at CERN
 - we could think to test again FBK-4E14M at Temp = -20°
- development of passing-through column detector is ongoing (first wafer completed at FBK, more wafers to come in a few weeks)

• For more details:

- A. Micelli *et. al* "3D-FBK Pixel sensors: recent beam tests results with irradiated devices", in press (<u>http://dx.doi.org/10.1016/j.nima.2010.12.209</u>)
- A. Micelli, "3D-FBK pixel sensors: overview of recent results with proton and neutron irradiated sensors", RD50: 17th RD50 Workshop on Radiation hard semiconductor devices for very high luminosity colliders, CERN, Switzerland, Nov 17-19, 2010

Backup

Quick look at data from Oct. 2010 BAT test beam

Device	ID	Bias voltage	Comment
STA-3E	160	35	Most upstream device
FBK-3E-5E15 (M13)	161	80	Irradiated to $5 \cdot 10^{15} n_{eq.}$
FBK-4E-3E15 (M14)	162	60	Irradiated to $3 \cdot 10^{15} n_{eq.}$
PLANAR	163	150	Most downstream device

	STA-3E	FBK-3E-5E15	FBK-4E-3E15	PLANAR	Triggers	
B=off, 0°	94.64	77.35	43.38	98.74	196'2917	
B=on, 0°	93.59	66.25	42.84	97.46	150'6560	
B=off, 15°	95.39	72.57	36.53	99.71	150'6560	
B=on, 15°	NOT ENOUGH DATA 6					

- analysis done by Kyrre Ness Sjøbæk (December 2010)
- more info:

https://twiki.cern.ch/twiki/pub/Atlas/PixelUpgrade3DTestBeam/tb2010-10.pdf

The ATLAS FE readout chip

Single Chip Assembly (SCA):

- Sensor bump-bonded to the FE-I3 Chip
- Bump-bonded at Selex (thermo-compression with indium bumps processes)
- 2880 readout cells, 160×18 pixels, each 50×400 μ m² size
- provides pixel charge measurement through digital-time-over-threshold (TOT)
 - measured in units of LHC bunch crossing rate (40 MHz)
- the conversion have been tuned to each individual pixel to respectively:
 - 3200 threshold e⁻ and 60 ToT for a deposited charge of 20 ke⁻
- 3D SCA pixels: threshold tuned and TOT calibrated with "TurboDAQ" software

Labs Measurements

Measurements:

- Electrical and noise tests:
 - IV scan
 - Standard calibration at Vnominal: Threshold, ToT calib
 - Standard calibration repeated for different voltage and temp. settings
 - Noise scan vs HV
- Response to radioactive source (γ-source Am²⁴¹ (at Genova/Cern) ß-source Sr⁹⁰ (Cern)):
 - The results shown here are still preliminary

- DUTs have been irradiated at difference fluence Nx10¹⁵ n_{eq}/cm² with neutrons (18,13,14) and protons (6,7,9 2,8), respectively:
- proton-irrad.:
 - Karlsruhe facility, 27-MeV
 - modules 6, 7, 9
 - proton-irrad at 5.4 $10^{14} \text{ p/cm}^2 \approx 1 \ 10^{15} \ n_{eq}/cm^2$
- proton-irrad.:
 - CERN facility, 24-GeV proton beam
 - module 2, 8
 - 2E,4E @ 3 10^{15} p/cm² ≈ 2 10^{15} n_{eq}/cm²
 - waiting for wire bonding @ CERN
- neutron-irrad.:
 - JSI neutron reactor in Ljubljana
 - modules 18, 13, 14
 - neutron-irrad. at 1,3,5 $10^{15}\ n_{eq}/cm^2$

ID on	Sensor	Fluence	Irrad.
Wafer	Туре	[n _{eq} /cm ²]	Туре
18	2E	1 10 ¹⁵	n
6	2E	1 10 ¹⁵	р
13	3E	5 10 ¹⁵	n
7	3E	1 10 ¹⁵	р
14	4E	3 10 ¹⁵	n
9	4E	1 10 ¹⁵	р
2	2E	2 10 ¹⁵	р
8	4E	2 10 ¹⁵	р

IV SCAN before/after irradiation

140

ID on Wafer	Sensor Type	Fluence [n _{eq} /cm ²]	Irrad. Type	V _{bd} [V]	V _{bd} [V]	α [10 ⁻¹⁷ A/cm]
18	2E	1 10 ¹⁵	n	0	10	
6	2E	1 10 ¹⁵	р	70	>120	5.40
13	3E	5 10 ¹⁵	n	60	60	
7	3E	1 10 ¹⁵	р	50	100	5.39
14	4E	3 10 ¹⁵	р	60	60	
9	4E	1 10 ¹⁵	р	60	65	5.28
A. Micelli	- INFN and	Afte	r IRRAD			

• p-irrad. devices: fluence 5.4 $10^{14} \text{ p/cm}^2 \approx 1 \ 10^{15} \text{ n}_{eq}$. /cm² • Damage rate:

$$\alpha = \frac{1}{\phi} \cdot \left(\frac{I_{vol} - I_{vol,\phi=0}}{Vol} \right)$$

January 12, 2011 IBL Italia

Noise SCAN before/after irradiation

- Behavior looks very similar for the same type of devices
- After irradiation the noise of the neutron irradiated sensors increase faster
- Temperature of scans T~ -20°C

INFN

Charge collection before irradiation

• Charge collection measured with Am²⁴¹ source

ID on Wafer	Sensor Type	Fluence [n _{eq} /cm²]	lrrad. Type	V _{bd} before [V]	V _{bd} AFTER [V]	α [10 ⁻¹⁷ A/cm]	Am ²⁴¹ mean peak before irrad. [ke]
18	2E	1 10 ¹⁵	n	0	10		14.2@20V
6	2E	1 10 ¹⁵	р	70		5.40	14.5@50V
13	3E	5 10 ¹⁵	n	60	60		14.4
7	3E	1 10 ¹⁵	р	50	100	5.39	
14	4E	3 10 ¹⁵	р	60	60		14.7@20V
9	4E	1 10 ¹⁵	р	60	65	5.28	14.09@50V

Am²⁴¹ SCAN before/after irradiation

Charge (ke)

- Before irradiation Am²⁴¹ peak is ~ 14.5 ke⁻
- Am²⁴¹ scans to measure charge collection vs bias after irradiation
 - (ToT calibration repeated at any voltage)
- the proton irradiated devices collect more charge
- plots with one cluster size
- temperature of scans T~ -20°C

Sr⁹⁰ SCAN before/after irradiation

- Before irradiation Sr⁹⁰ peak is ~15.71 ke⁻
- Sr⁹⁰ scans to measure charge collection vs bias after irradiation (ToT calibration repeated at any voltage)
- plots with one cluster size
- temperature of scans T~ -20°C

I N F N

Lab Measurements

3D-FBK-3E proton-irradiated to $1 \times 10^{15} n_{eq}/cm^{-2}$ (thickness 200µm)

- radiation damage: run with bias voltage -80 V
 - ~ -20% signal loss
 - rightarrow in agreement with lab tests made with β source Sr⁹⁰
 - sensor was not fully depleted
- overall efficiency still high (~99%)

Lab Measurements

