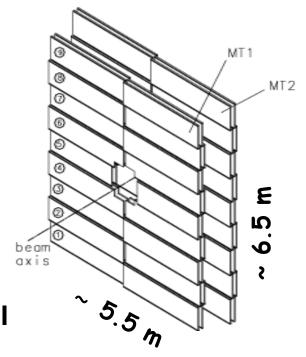
Muon IDentifier: status e richieste

A. Ferretti, <u>M. Gagliardi</u>, L. Terlizzi (Università e Sezione INFN, Torino)

Riunione ALICE-Referee 21/07/22

ALICE Muon Identifier


- -72 Resistive Plate Chambers arranged in 4 detection planes
- Single RPC areas range from 72x223 cm² to 76x292 cm²

Responsibilities:

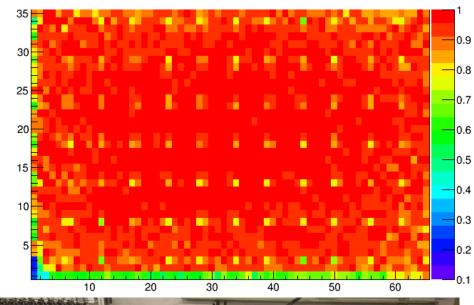
Torino: Gas gaps, external mechanics, control system, gas system.

- ~ 7 FTE
- Ruoli di responsabilità in MID: Muon Identifier Sub-Project Leader (A. Ferretti) Muon Identifier Technical Coordinator (P. Mereu)

Clermont-Ferrand + Nantes (F), iThemba (SA): front end and readout electronics, software

The Muon Trigger upgrade to Muon Identifier

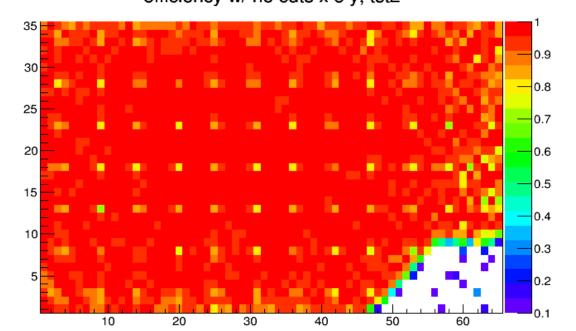
- ☐ Goal #1: detector performance and safe long-term operation in such a scenario
 - -> detector and FEE upgrade (<u>INFN Torino</u>, LPC Clermont-Ferrand)
 - a) reduce charge-per-hit by a factor 3-5 by developing FEE cards with amplification
 - b) replace ~30% most irradiated RPCs → production of new RPCs
- \Box **Goal #2**: dead time-free readout (vs present 150 µs)
 - -> readout electronics upgrade (Subatech Nantes, LPC Clermont Ferrrand)


RPC production and status in INFN-TO lab (1)

Istituto Nazionale di Fisica Nucleare Sezione di Torino

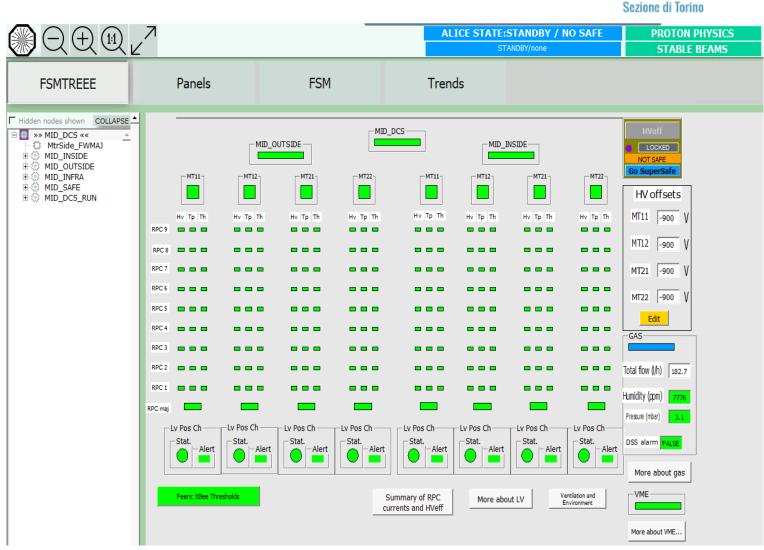
efficiency w/ no cuts x o y, tst2

- RPCs production before 2019 highly unsatisfactory
 - → inefficiency holes at the HV working point (WP)
 - → high currents
 - → general carelessness in the production process
 - → not possible to use them in ALICE
- New pre-production batch of 3 RPCs at the end of 2019, after several interactions with the firm
- All 3 RPCs tested in early 2020 showed:
 - → an efficiency higher than 95% at working point
 - \rightarrow low currents (lower than 1µA)
 - → can be used in ALICE

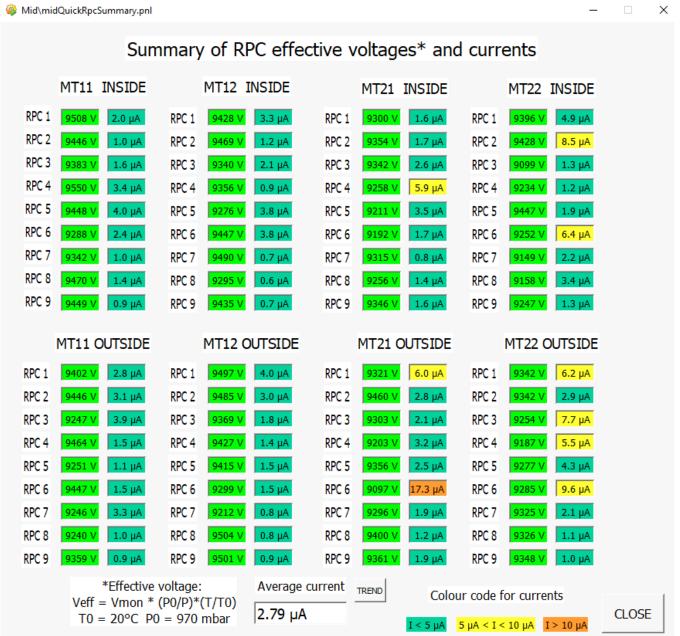


RPC production and status in INFN-TO lab (2)

- New production batch of 30 RPCs in 2021
 - → delayed at the firm due to Covid-19 pandemic
- RPCs tests started in Spring 2022
 - → delay due to the commissioning of the brand new INFN-TO laboratory and re-assignment of manpower to the commissioning at CERN efficiency w/ no cuts x o y, tst2



- 4 RPCs tested so far. All of them show:
 - → an efficiency even higher than the 2019 pre-production batch (lower working point)
 - → slightly higher currents, between 2µA and 10µA (causes under investigation)
 - → can be used in ALICE


MID re-commissioning and operation at CERN (1)

- Several hardware interventions during the first phase of the commissioning without beam (gas system, HV cables, gas leak recovery...)
- Online systems (RO, QC, DCS) recommissioned (some with basic functionalities only), fine-tuning ongoing
- The entire system was READY during the first Run 3 STABLE BEAMS on July 5th
- Commissioning with first pp collisions ongoing → need to tune working parameters RPC by RPC
- Up to now, MID has always been READY and taking data with pp collisions

RPC currents at (tentative) working point

MID plans 2022-2023

2022

- as stable as possible data-taking with pp collisions, fine-tuning of RPC HV and thresholds and improvement of online systems in parallel, with the goal to be in the best possible shape for the Pb-Pb run (November 2022)
- complete tests of the new RPC batch

Winter shutdown 2022-23

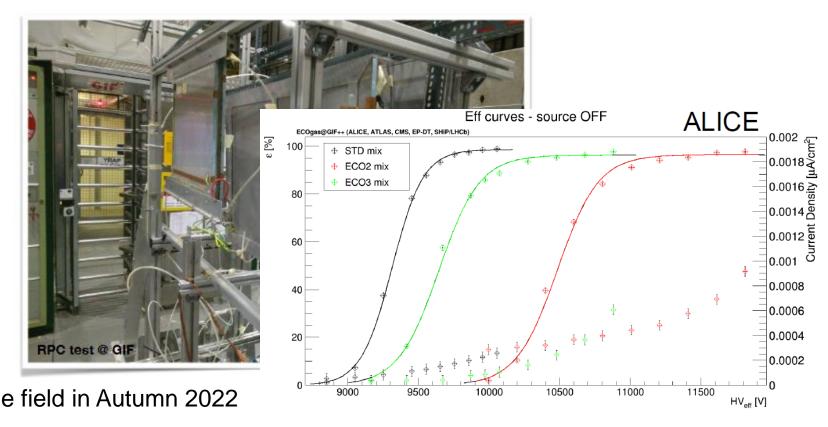
→ installation of up to 10 new RPCs (sblocco 4.5 kEuro s.j. a settembre)

2023

- stable data-taking with proton and heavy-ion beams
- maintenance interventions as needed (gas leaks, HV cables are typical culprits)
- installation of more RPCs from the new batch

Milestones

Anno	Milestone	Compl. al 30/06/22	Commenti	
2021	Completamento test nuove RPC (dal 2020)	20%	test ancora in corso	
2022	Partecipazione presa dati con collisioni pp e Pb-Pb	50%	presa dati Pb-Pb ancora da svolgere, rivelatore pronto e integrato in ALICE	
2023	Partecipazione costante e regolare alla presa dati con collisioni pp e Pb-Pb			


RPC activities @ GIF

- RPC Gas R&D join effort (ATLAS, CMS, ALICE) in view of Run 4 and beyond
 - Replace tetrafluoroethane from the RPC gas mixture (high value of Global Warming Potential)
 - Tetrafluoropropene-CO2-based gas mixtures already tested with cosmics with promising results

Tests @ GIF

- Since 2020, prototype RPCs flushed with the new mixture have been exposed to gamma irradiation at CERN GIF to check the aging, working current and dark current have been monitored
- Several beam tests carried out in 2021 and 2022
 - cluster size, efficiency,
 rate capability...
 - systematic study vs gas mixture
 - → results are being analysed and will be presented at relevant conferences and workshops in the field in Autumn 2022

Richieste 2023

Richieste specifiche

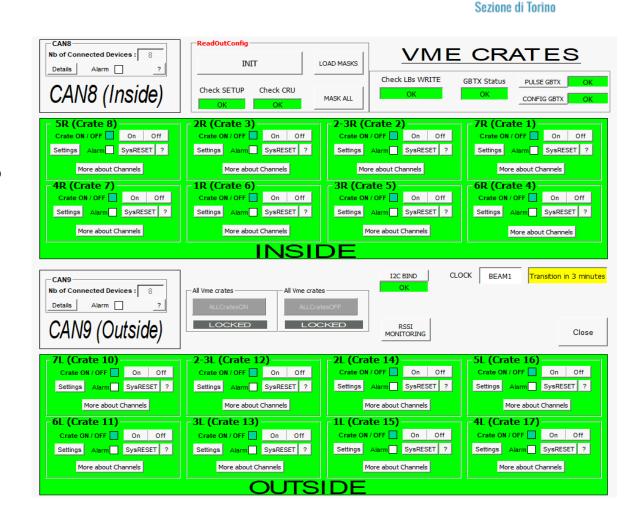
- Interventi di maintenance durante i technical stop:
 - → 3 settimane al CERN per 2 tecnici + 1 fisico/tecnologo
 - → 9 kEuro missioni
- Partecipazione ad attività progetto Ecogas@GIF++ (beam + ageing tests)
 - → 2 settimane al CERN per 2 persone
 - → 4 kEuro missioni

+M&O-B: 29 kCHF Servizi

Backup

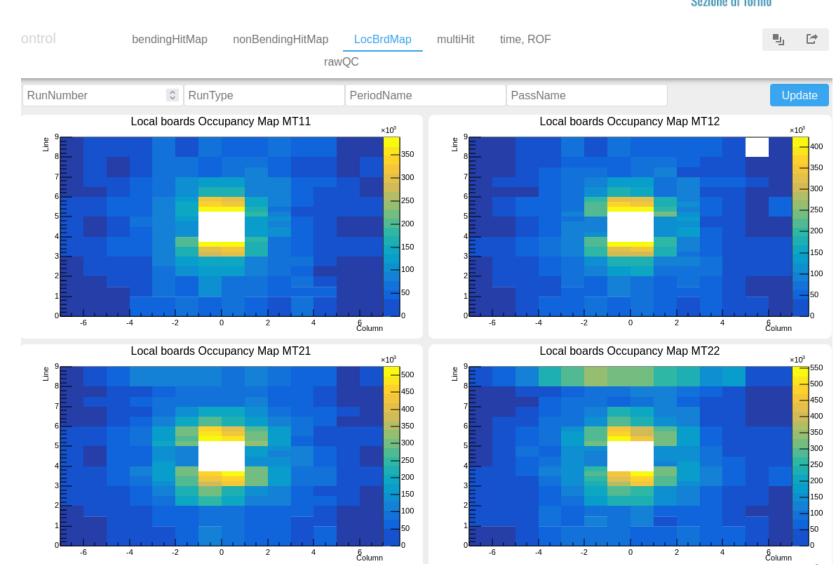
MID M&O-B 2023

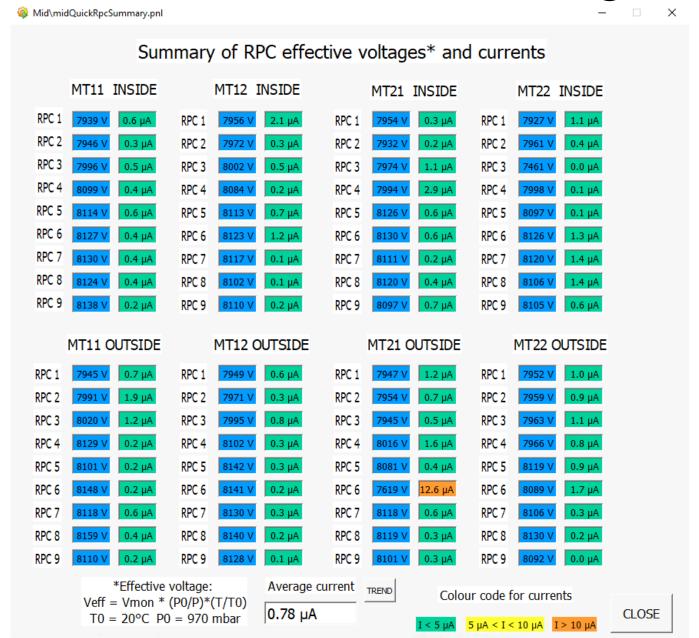
budget description	Spesa (kCHF)
Mechanics	4
Gas Systems	4
Cooling Systems	
FEE spares	
Standard Electronics LV/HV PS	5
Standard Electronics Crates	5
Standard Electronics R/O modules	
Controls (DCS & DSS)	
Sub-Detector spares	5
Areas	
Communications	3
Store Items	2
Technical Manpower @ CERN: Industrial	
Support	
Technical Manpower @ CERN: subsistence	38
Totale	66


INFN share in MID M&O-B: 44% → INFN contribution = 29 kCHF

MID status at ALICE at CERN (2)

Several improvements on the VME side:


- 1) GBTx links down by clock transition on Beam1
 → automatic "bring-up" done and working
- 2) Calibration run of the detector after the BEAM DUMP
 → done and working, took less than 4 min
- 3) Firmware update of LOCAL cards
 - → restoring the default registers and masking corresponding channels done and working
- 4) CRU UL bug: logic broken because of timing issues, resource usage too large
 - → bug fix to be validated and deployed


MID status at ALICE at CERN (3)

- Online Quality Control (QC) development ongoing:
 - → digits QC done
 - \rightarrow raw QC t.b.d.
 - \rightarrow MID tracks t.b.d.
- → matching between MID and others ALICE muon detectors ongoing
- Status sum-up:
 - → all 72 RPCs are operational
 - → readout electronic is ok
 - → no issue on data taking
 - → QC under development

RPC currents at BEAM-SAFE voltage

Profilo di spesa RPC + gas system

	201 5	2016	2017	2018	2019	2020	2021	Tot
MoU (kCHF)	41	17	7	37	0	0	0	102
Finanziamento INFN (kCHF)	41	17	7	0	23	5-9 (sblocco s.j. settembre)	13 s.j.	93-97+13 s.j.

Profilo di spesa FEERIC

	2015	2016	2017	2018	2019	2020	Tot
MoU (kCHF)	16.5	32	30.5	10	5	0	94
Effettivo (kCHF)	17.5		48	0	10	0	75.5
Finanziamento INFN (kCHF)	30	32	3.5	0	10	0	75.5