Attività 2022 Richieste 2023

ALICE-HMPID (High Momentum Particle Identification) detector

G. De Cataldo and G. Volpe

ALICE-HMPID

Contributing institutes:


- 80% University & INFN Bari (G. De Cataldo PL and G. Volpe deputy PL)
- 20% CERN team

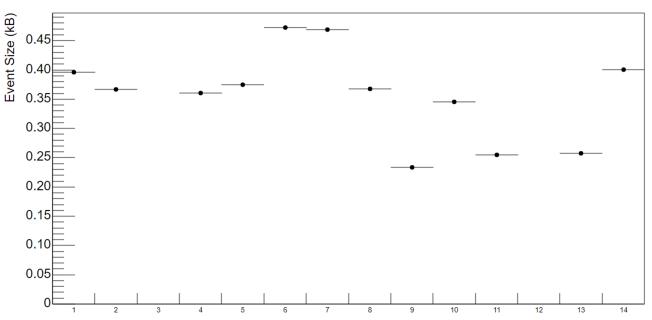
Participating institutes with in-kind contributions:

- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Lavana, Cuba
- Wigner Inst. Budapest, Hungary.
- Dep. of Physics and CIT dept. of the University of Malta, Msida,
 Malta;

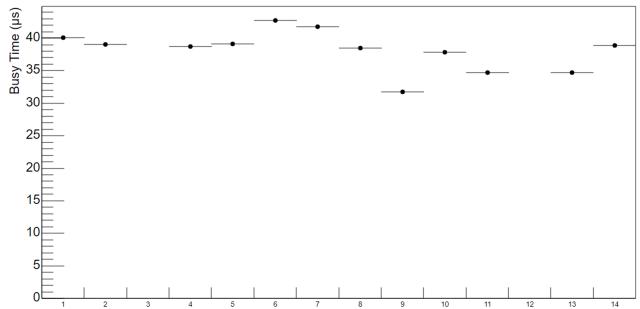
7 RICH (Ring Imaging CHerenkov) modules

- ~1.3 x1.3 m2 for a total CsI active area of ~11 m²
- (@ 3σ) π/k **identification** in 1-3 GeV/c and protons in 1.5-5 Gev/c momentum intervals;
- |η|<0.5

HMPID report


- HMPID successfully took data with pp collisions at 13.6 TeV
- Global run with full configuration
 - Data recording
 - Syncronous workflow enabled
 - QC enabled
- 11 links out of 14 were ON
- MWPC's worked very stably at the operational HV = 2050 V
- Data taking was very stable:
 - event readout rate: \cong 5 KHz (as from target luminosity. RO max rate \sim 25KHz);
 - data size readout rate:

 ⊆ 60 MB/s;
 - Time frame builder running and archiving data


HMPID report

HMP QC plots

HMP Event Size per DDL

HMP Busy Time per DDL

ALICE-HMPID in O²

Simulation and reconstruction in O²

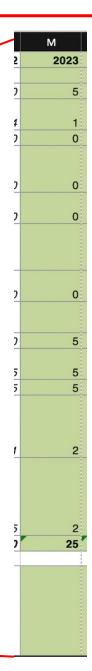
- Detector geometry and hits creation implemented
- Creation of digits from hits implemented
- Creation of digits from raw data implemented
- Creation of raw data from digits implemented
- Cluster creation from digits
- Track matching and Cherenkov angle reconstruction → to be finalized

Calibration

- The calibration procedure for HMPID in RUN3 will be similar to that used in RUN1 and RUN2
 - Average and sigma of the pedestal need to be calculated in dedicated RUN (PEDESTAL RUN), loaded into the RO electronics and stored in the CCDB → code implemented
 - Procedure to be fully automated in the PEDESTAL runs
 - Gas gain and mean refractive index using information from DCS (MWPC gas pressure and temperature, freon transparency) → code implemented, procedure under test

Budget request (M&OB) for 2023

The HMPID will be brought at the surface and dismounted during 2026;


As from 2023 till 2025, the maintenance and interventions will be reduced at the minimum;

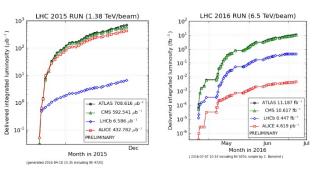
The total on 2026 is an estimate for the detector removal and dismounting;

The expected increase of A08 areas is just an estimate for the infrastructures

in the dismounting area.

A	В	С	D	E	F	G	н		J	K	L	М	N	0	Р	Q	R	S
1 Budget	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	202	2023	2024	2025	2026	Comments		
2 A01 Mechanics																Comment from A01 till A11.3 : the H	MPID will be	brought
A02 Gas Systems	25	15	10	15	15	15	15	5	5	10	1	5	5	5	0			
A03 Cooling					1													
4 Systems	4	4	4	4	4	4	4	2	2	4		1	1	1	0			
A04 FEE spares	6	1	1	1	1	1	1	1	1	0		0			0			
A05.1 Standard Electronics LV/HV 6 PS	8.5	4	4	4	4	4	10	4	4	0		0			0			
A05.2 Standard Electronics Crates	2	1	1	1	1	1	1	1	1	0		0			0			
A05.3 Standard Electronics R/O 8 modules																		
A06 Controls (DCS & DSS)	3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	o		0			0			
A07 Sub-Detector spares																		
11 A08 Areas	50	35	30	25	25	25	25	20	15	10	10	5	5	5	10			
A09 Communications	8	8	8	8	8	8	8	8	8	8		5	5	5	0			
13 A10 Store Items	8	8	8	8	8	8	8	8	8	8		5	5	5	5			1
A11.1 Technical Manpower @ CERN: Industrial 4 Support	10	5	10	5	5	5	5	5	5	5		2	2	2		Comment from raw 1 to 15: the HM	PID will be b	rought at t
A11.3 Technical Manpower @ CERN from Collaborating Institutes	20	10	15	10	10	10	10	10	10	5	1:	2	2	2	5			
16 Total	144.5	92.5	92.5	82.5	82.5	82.5	88.5	65.5	60.5	50	5		25					
A11.2 Technical Manpower @ CERN from Collaborating Institutes (in man- months)																		

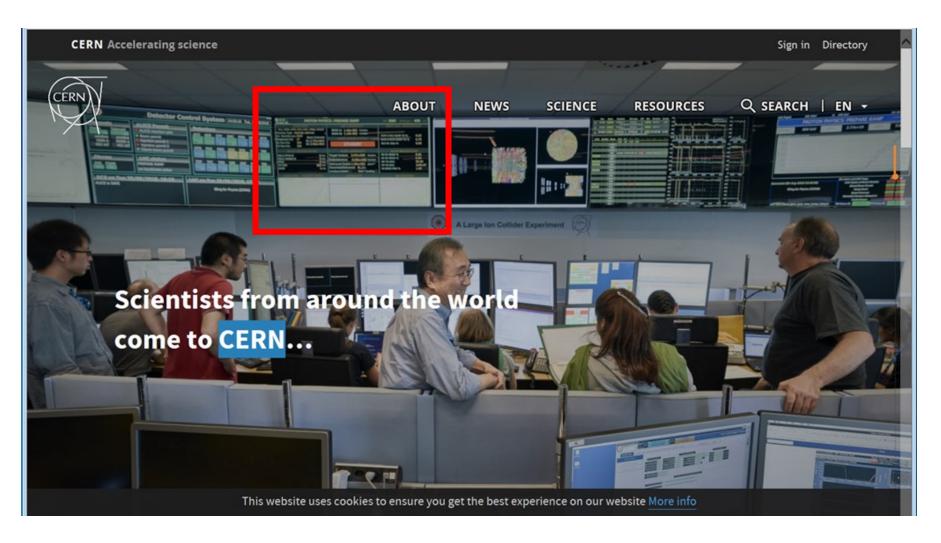
ALICE-LHC Interface



LHC_IF large display in the ALICE RC

Vistar Page 1

Official plots of LPC


Tasks, people and institutions

- PL and DPL: G de Cataldo (INFN Bari, It) and G. Valentino (CIT department, University of Malta);
- LHC_IF Software coordinator engineer: A. Franco (INFN Bari, It),
- Beam instrumentation: resp. A. di Mauro (CERN, CH); responsible of BPTX, BLS control software: O. Pinazza (INFN Bologna, It/ALICE DCS),
- BCM hardware and software: di Mauro, De Cataldo, A. Franco
- b-by-b calculations (VdM scan, lumi, bkgd,..): I. Kralick (Slovak Academy of Sciences (SK));
- LHC_IF infrastructures: DCS (P. Chochula, CERN, CH as contact person).

Attività di Upgrading 2021-2022


- Successful migration of the project to the new version of the SCADA WinCC OA 3.16 system;
- Some ALICE-LHC Interface Upgrading meetings for Run3 carried out and other programmed;
- Collected requests from detectors and central systems for monitoring brightness and beam background;
- Creation of the LHC dataset in the Global Run Parameters for the Data Processor Layer (DPL);
- GRP data storage in CCDB: LHC_IF → CCDB,...
- Collider integration activities <->ALICE-LHC Interface (Massi files on EOS);
- New shift leader and Run coordination graphical interface for experiment operations;

ALICE-LHC Interface

ALICE DCS UI

ALICE DCS UI: Programmable graphical interface, component of the central DCS for the experiment and the individual detectors;

Summary

HMPID

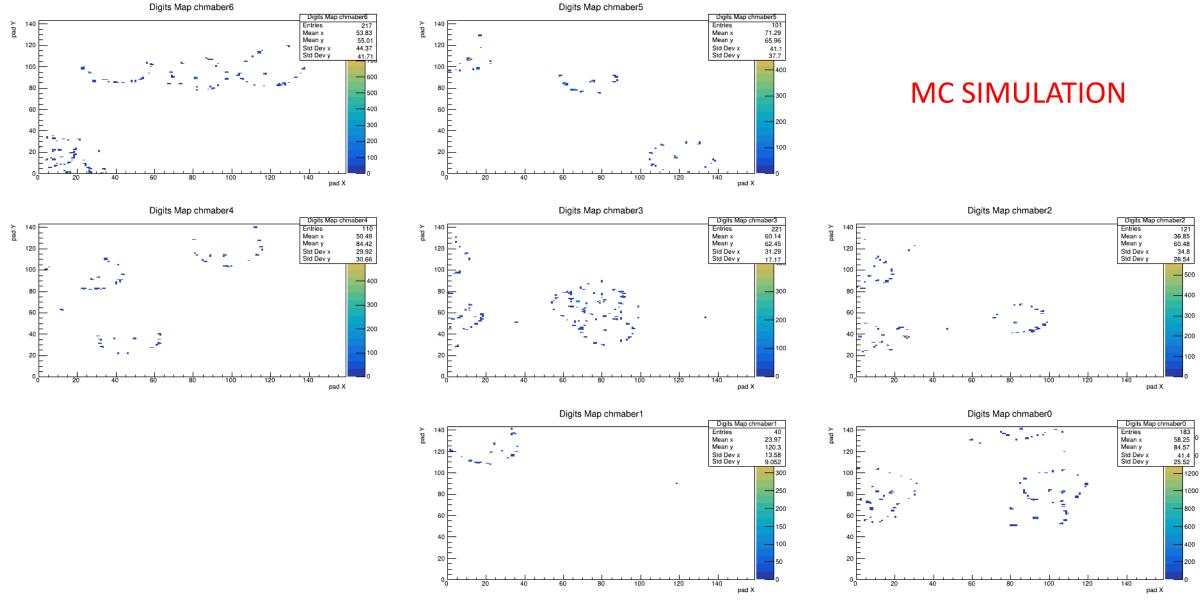
- HMPID integration in O² almost completed
 - Cherenkov angle reconstruction will be soon finalized
 - Pedestals calculation and uploading to be fully integrated in PEDESTAL run
- Excellent HMPID results in preliminary data taking (pilot beam, first pp collsions at 13.6 TeV);
- Financial requests (M&OB)2023: 25 KCHF.
- Credits to
 - A. Franco INFN Bari for contributions RO, DCS and QC software development;
 - Raul Arteche Diaz CEADEN for RO FW;

For your information

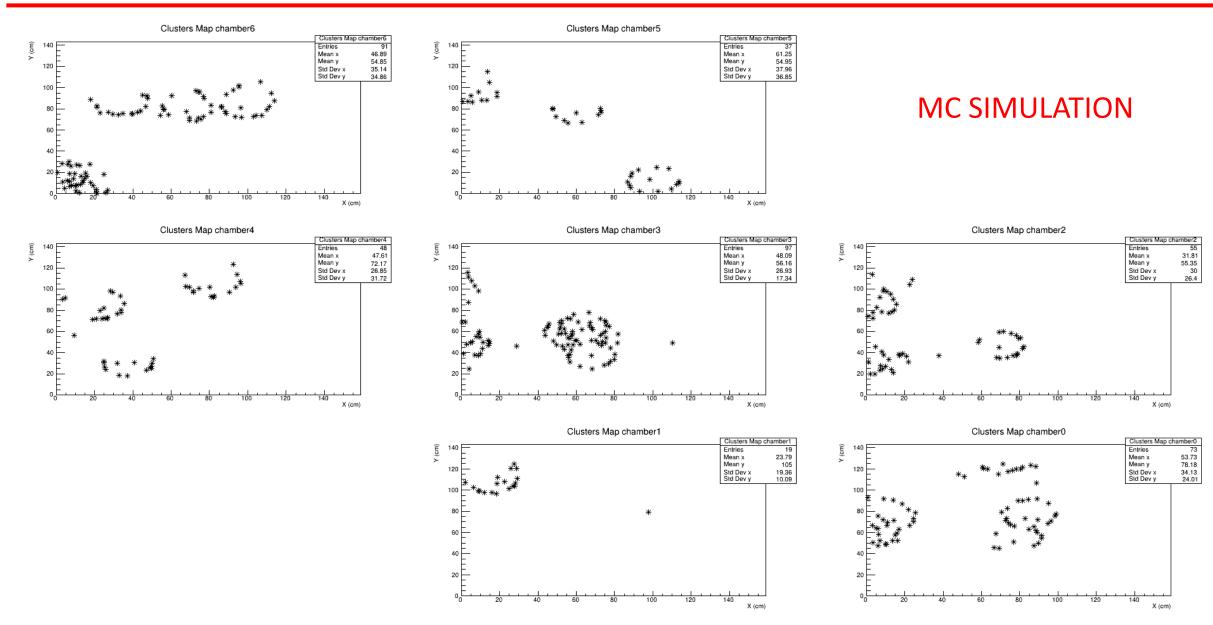
- ALICE-LHC Interface
 - Implementation new SL_UI;
- ALICE DCS UI
 - Programmable UI produced for the central DCS and for the individual detectors.

Backup

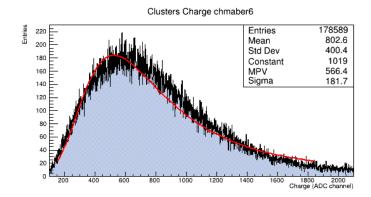
HMPID Reconstruction: clusterization

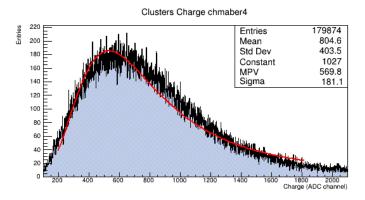

- **Detectors/HMPID/workflow**

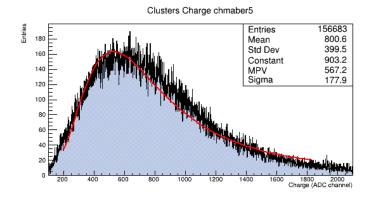
 - DigitsToClustersSpec.cxx/.h
 Digits-to-clusters-workflow.cxx

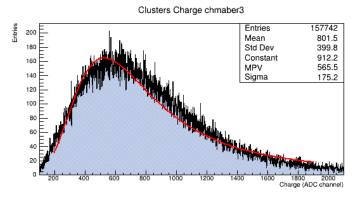

Get the workflow running (DPL); digits reading for cluster creations [implemented]

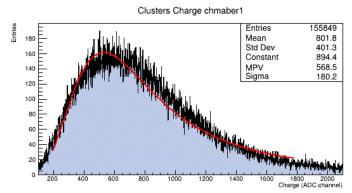
- **DataFormat/Detectors/HMPID**
 - Cluster.cxx/.h -> cluster implementation: [implemented]
- **Detectors/HMPID/reconstruction**
 - Clusterer.cxx/.h → HMPID clusterization algorithm: [implemented]

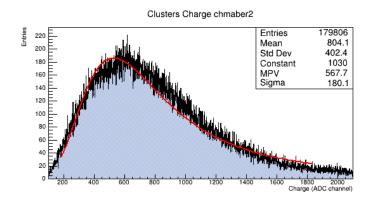

Digits map

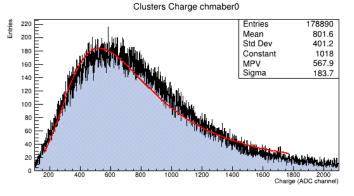


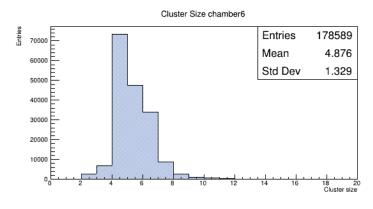

Clusters map

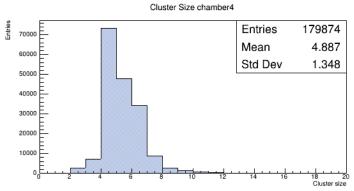


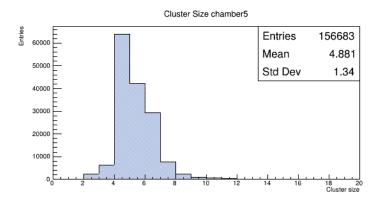

Cluster charge

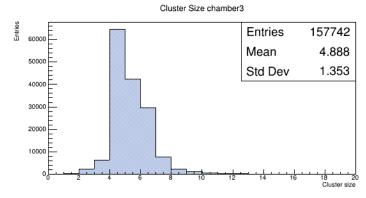


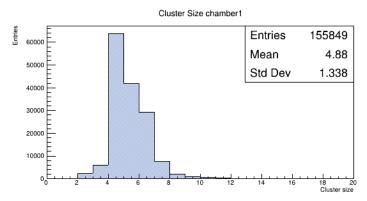


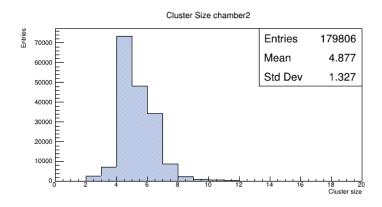


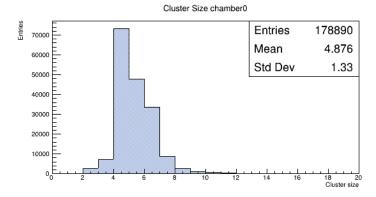

MC SIMULATION






Cluster size





MC SIMULATION

