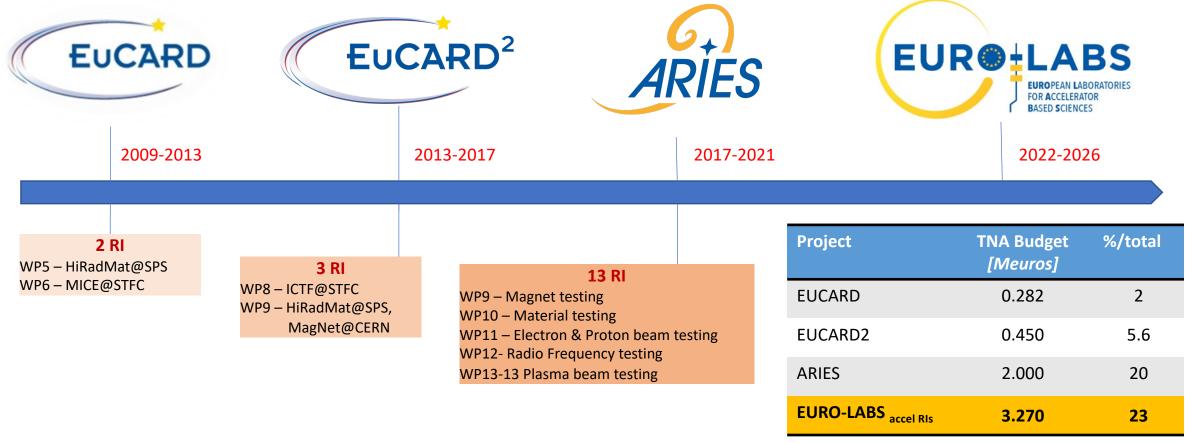
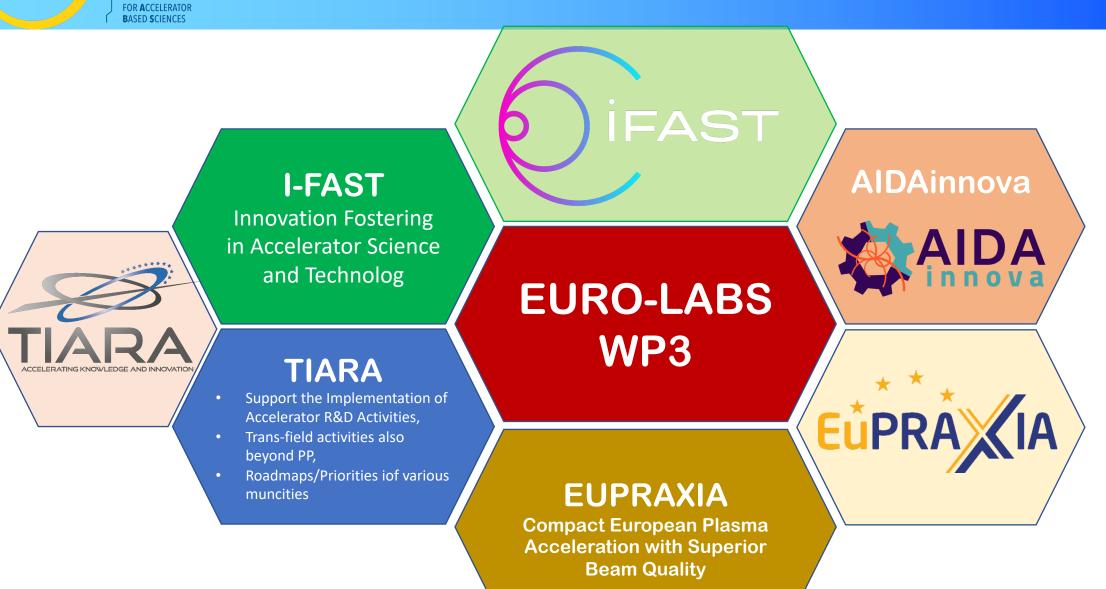


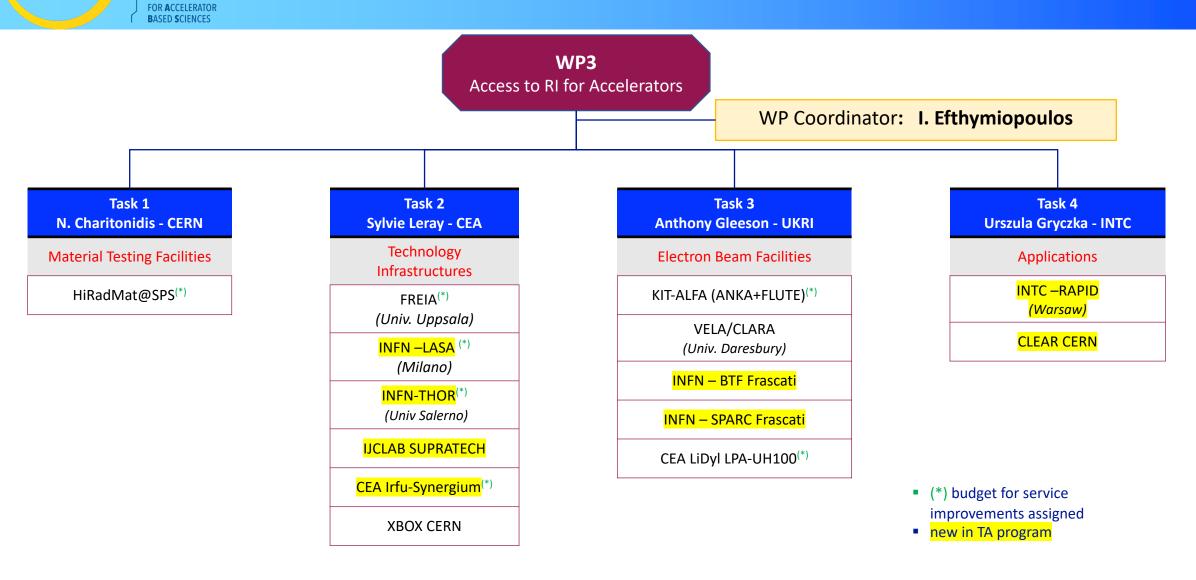
WP3 – Access to Research Infrastructures for Accelerator R&D


I. Efthymiopoulos – for the WP3

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.

EURO LABS EC-funded TA in Accelerator RIS


A long-history of TA programs embedded in various projects before EURO-LABS


- Extend participation and include the leading facilities involved in Accelerator R&D in Europe
- Maintain and further strengthen the collaboration, exchange of information, and knowledge between the facilities and the User Community
- Support the User Groups in their Research provide expert help exploit the full capabilities and extract the maximum scientific outcome from the facilities
- With targeted service improvements, enrich the possibilities of the facilities to the profit of the Users
- Fertilize synergies between the research communities and applications
- Support ongoing R&D efforts in the Present and Future Accelerators
- Targeted Outreach & Training activities to attract new (or to be) Researchers in the Field of Accelerators

EURO LABS WP3 & Accelerator R&D

EURO-LABS KOM, 03.10.2022

EURO LABS WP3 - Accelerator RIS

Facility Location Coordinator Description Tast 1 : Material Testing Facilities

	Tast 1. Material resulting Facilities							
1	HiRadMat	CERN	Nikos Charitonidis	Intense pulsed beam from CERN SPS, 2.4MJ/pulse	LHC collimators, Crystal collimators, RADIATE collaboration for beam intercepting equipment, Beam Instrumentation, HEP detectors Recent highlight: Experiment to study filamentation of particle beams in plasma interaction – FIRST use of accelerator facilities for astrophysics experiments!			

EURO LABS WP3.1 – Material Testing Facilities

BASED SCIENCES

Expected Users

EURO LABS WP3.1 – Material Testing Facilities

• HiRadMat@CERN

- High-intensity pulsed beam from CERN SPS proton and ions beams
- R&D on material testing at beam impact near beam devices (collimators)⁻ beam windows,

Other facilities for material testing R&D in WP2, as well as irradiation facilities in both WP2 and WP4

EURO LABORATORIES WP3.2 – Technology Infrastructures

	Facility	Location	Coordinator	Description	Expected Users
	Task 2 : Technology Infrastructures				
1	FREIA/Univ. Uppsala	A/Univ. Uppsala Uppsala, Akira Miyazaki Sweden		Test stand for SC magnets and RF, vertical (GERSEMI) and horizontal (HNOSS) cryostat	ESS, CERN, MYRRHA/MINERVA, ITER/DONES, and PIP II at Fermilab, US)
2	INFN-LASA	complex UHV system for g		Test stand for SC magnets and RF cavities, complex UHV system for growing photocathodes, laser applications for cavities	LAL Orsay, Saclay
3	INFN-THOR	Salerno, Italy	Umberto Gambardella	Horizontal test stand for SC magnets	GSI
4	IJCLab SUPRATECH	CNRS Orsay, France	Walid Kaabi	Test stand for SC RF cavities	US teams from PIP-II
5	LRFU-Synergium	CEA Saclay, France	Sylvie Leray, Pierre Vedrine	Characterization of thin film SC layers for RF cavities and materials at low temperature	Teams from CERN, FermiLab, Jlab, Chicago Univ. possibly industrial firms
6	ХВОХ	CERN	Roberto Corsini	Hgh-power RF testing	

EURO LABORATORIES WP3.2 – Technology Infrastructures

BASED SCIENCES

FREIA @ UU Hnoss – Gersemi – Cryo Test Stand facility for testing RF cavities and SC magnets, V & H cryostats LASA @ INFN-MI facility for testing RF cavities and SC magnets V cryostats

THOR & INFN – USalerno facility for testing SC magnets H cryostat

EURO LABORATORIES WP3.2 – Technology Infrastructures

BASED SCIENCES

IJCLab SUPRATECH @ CNRS Orsay facility for testing RF cavities, cryomodules, V & H cryostats LRFU-Synergium @ CEA-Saclay

DACM facility for characterization of materials used in SRF, material samples at low temperature, mechanical test lab

XBOX @ CERN

Klystron X-band test stands (11.994GHz – 50MW/1.5µs/50Hz and 6MW/5µs/400Hz) klystrons

EURO LABS WP3.3 – Electron Beams

	Facility		Location	Coordinator	Description	Comments, Expected Users
	Tast 3 : Electron _a	and plasma Beams	5			
1	KIT-ALFA	- ANKA -FLUTE	Karlsruhe, Germany	Robert Ruprecht	 Intense electron beam 0.5-2.5GeV Photo-injector with laser,7-40/50 MeV electrons 	- THz radiation experiments
2	STFC	CLARA	Daresbury, UK	Anthony Gleeson	Versatile electron accelerator, up to 40MeV	
3	INFN-LNF	BTF	Frascati, Italy	Alessandro Gallo	Electron beam from linac, 25-500 MeV	Intensity down to single electron!
		SPARC			10-500pC e-bunches, 20fs-5ps rms, 80-140 MeV	FEL community, material THZ radiation, plasma electron studies
4	LiDyl	LPA-UH100	CEA, Saclay, France	Sandrine Dobosz	Laser-plasma accelerator, UHI 100 (electron source), 100TW class laser	New improved facility to operate in spring 2022

WP3 – RI for Accelerators Electron Beams

EUROPEAN LABORATORIES FOR ACCELERATOR BASED SCIENCES

EUR@±LABS

ANKA-FLUTE @ KIT-ALFA

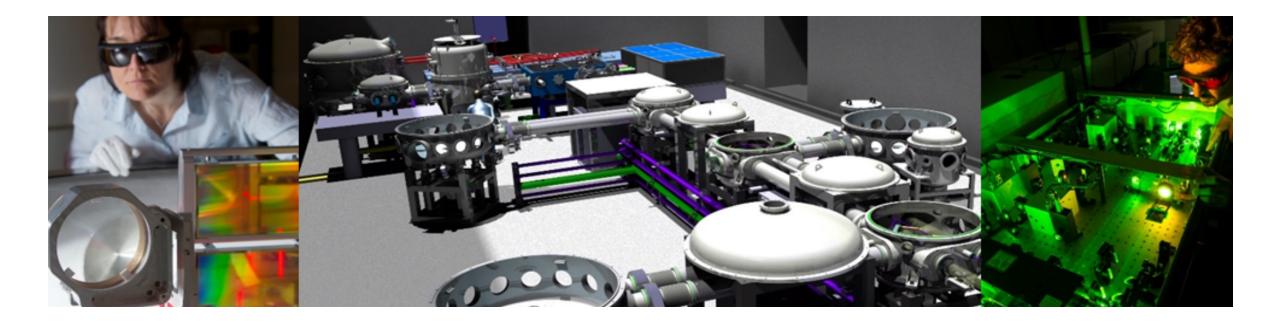
Test facility with electron and photon beams (0.5-2.5 GeV) variable bunch lengths (50ps to few ps) – test facility with THz radiation

CLARA @ UKRI-Daresbury

Facility offering electron beam (up to 40MeV/c) and variable bunch length, down to 0.3ps_{upgrade}

BTF2 - SPARC @ INFN-LNF

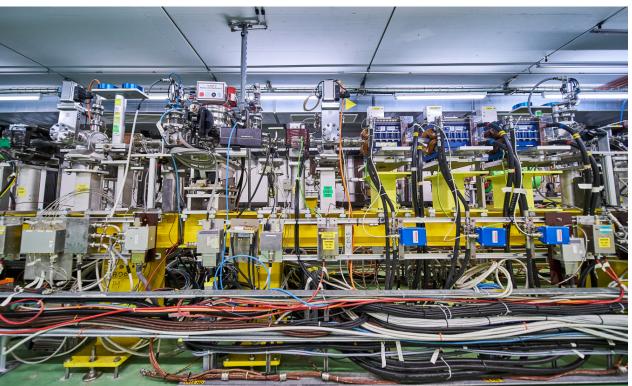
Pulsed high-intensity electron/positron beam (up to 500/700 MeV, 10⁶e/s) for BTF – short electron pulses 10-500pC ebunches, 20fs-5ps rms, 80-140 MeV for SPARC


EURO-LABS KOM, 03.10.2022

WP3 – RI for Accelerators EUROPEAN LABORATORIES FOR ACCELERATOR BASED SCIENCES Electron Beams

LPA-UHI100 @ CEA-Saclay

Laser-plasma accelerator, UHI 100 (electron source), 100TW class laser to produce a 25fs pulse, electron beam up to 150 MeV, 50 pC/shot or 10 MeV over 100µm, 10nC/shot – Attosecond source for beam diagnostics R&D


Service improvement plan by introducing Machine Learning techniques for beam control

EURO LABS WP3.4 – Applications

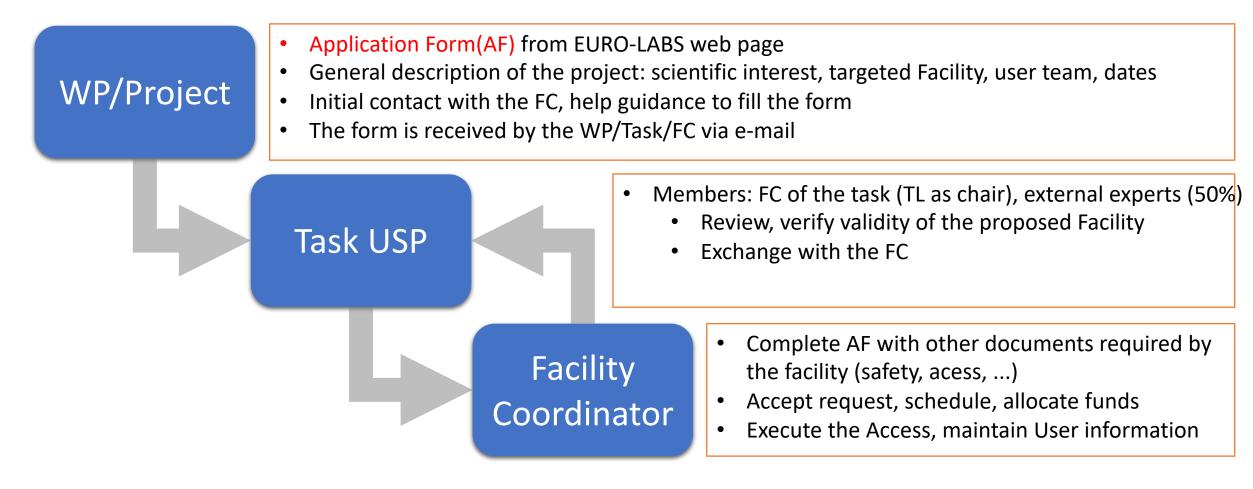
	Facility		Location	Coordinator	Description	Comments, Expected Users
	Task 4 : Applications					
1	CLEAR		CERN	Roberto Corsini	Electron beam, 200 MeV electrons, 10Gy/s dose	VHEE/FLASH, CERN-CHUV collaboration,
2	INCT	RAPID	Warsaw, Poland	Urszula Gryczka, Andrej Schmiewski	Electron beams 0.1-10MeV, 0.1- 20kW – 5 electron accelerators, 3 Gamma sources (Co60)	Radiation chemistry, ns-pulse radioliysis

EURO LABS WP3.4 – Applications

CLEAR @ CERN Test facility with electron and beams (60-230 MeV, 0.1-10ps rms, up to 30nC/pulse) – beam diagnostics R&D – medical applications VHEE beams/FLASH RAPID @ INCT

Facility providing electron beams (0.2-10MeV, 0.1-20kW) and gamma irradiations (Co60) – 10MeV ns e-pulse for Radiolysis

Pilot plant <u>facility</u> ILU 6 0.2-2 <u>MeV</u>, 20 kW INCT, Poland



EURO-LABS KOM, 03.10.2022

EURO LABS Handling of TA Requests

EURO LABS EURO PEAN LABORATORIES FOR ACCELLERATOR BASED SCIENCES BENONDATIONES

Dissemination

- Articles in NewsLetters and Journals (CERN Bulletin, CERN Courrier, Accelerating News, ...)
- Presentations in other project meetings (I-FAST, TIARA)
- Advertise experiments and results from the Facilities in Conferences, Periodicals

• Training - Outreach

- Accelerators for Universities and Researchers : a yearly program, where teams from Universities are invited to participate, solve some problems and/or propose an experiment with the winning teams invited for a hands-on experience in the Facilities
 - Target Universities and Technical schools from countries outside the usual domain of HEP(Nuclear) Physics
- Sponsor seminars and conference presentations from Young Researchers who received EURO-LABS funding to present their results

EUROPEAN LABORATORIES FOR ACCELERATOR BASED SCIENCES

The only joy in the world is to begin Cesare Pavese – 1908-1950