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Quantum superpositions

Microscopic superpositions

Experimentally verified

Macroscopic 

superpositions

Never seen

Cats are made of atoms + linearity of the theory



Standard Quantum Mechanics
Classical world

The wave function gives the probabilities 
of outcomes of measurements

The Copenhagen interpretation assumes a mysterious division between the microscopic 
world governed by quantum mechanics and a macroscopic world of apparatus and observers 
that obeys classical physics […]

Quantum world

The cat

S. Weinberg, Phys. Rev. A 85, 062116 (2012) 
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The Schrödinger equation is modified. The new dynamics is nonlinear in such a way to 
describe the quantum micro-world, the classical macro-world, as well as the transition from 
one to the other.

Spontaneous wave function collapse
Classical worldQuantum world

The cat

Wave ParticleSmooth transition

G.C. Ghirardi et el., Phys. Rev. D 34, 470 (1986)



Gravity and the Collapse of the Wave Function: a Probe into Diósi-Penrose model 2

toward the macro-scale. In this way, within a unique dynamical equation, both the

quantum and the classical world can be described consistently.

Collapse models are phenomenological models. Their justification from

fundamental physical principles is not yet known and it very much depends on one’s view

about the physical origin of the collapse field. A natural explanation can be provided

by gravity, because gravity is universal and its strength increases with the mass of the

system. In fact, these are two crucial properties of the collapse field.

The connection of the collapse field with gravity has been explored by many

authors [7, 8, 12, 16, 18–21], in particular by Károlyházy et. al [19], Diósi [7, 8, 16] and

Penrose [12], independently. Here, we will focus on the works of Diósi and Penrose,

which is usually called as DP model. Diósi proposed a stochastic nonlinear Schrödinger

equation as follows [8]:
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where Ĥ is the standard quantum Hamiltonian, hM̂(x)it = h t|M̂(x)| ti, M̂(x) is the

local mass density operator, which in the first-quantization formalism reads:

M̂(x) =
NX

j=1

mj �(x� r̂j), (2)

with r̂j the position operator of j-th particle; and Wt(x) is a real Wiener process

producing the white noise w(t,x) = dWt(x)/dt with the statistical properties:

E(w(t,x)) = 0, E(w(t1,x)w(t2,y)) = �(t1 � t2)G(x� y) (3)

where E(· · · ) is the stochastic average, and G(x� y) the two-point correlation function

of the collapse field:

G(x) = G

~
1

|x| , (4)

where G is the gravitational constant. With Eq.(1) in hand, the statistical operator

evolves as
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However, there are divergent terms in above equation (see Eqs.(7,8)). To regularize

the dynamics, Diósi proposed to introduce a cut-o↵. Although the introduction of the

cut-o↵ prevents the divergence in the evolution equation of the statistical operator, the

The dynamics of collapse models

Nonlinear

Stochastic

CSL model

DP model
L. Diosi, Phys. Rev. A 40, 1165 (1989)

A. Bassi and G.C. Ghirardi, Phys. Rept. 379, 257 (2003), A. Bassi, K. Lochan, S. Satin, T.P. Singh and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)

P. Pearle, Phys. Rev. A 39, 2277 (1989). 

G.C. Ghirardi et al., Phys. Rev. A 42, 78 (1990)

Quantum mechanics + collapse in space
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M(x) = ma†(x)a(x)
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hM(x)it = h t|M(x)| ti
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E[dWt(x)] = 0 E[dWt(x)dWt(y)] = G(x� y)dt

Collapse operator ∼ position

Noise driving the collapse
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Collapse dynamics in a nutshell
Microscopic superposition in space. Collapse very weak, 
modulo tiny deviations  

Macroscopic superposition in space. Collapse very 
strong. The larger the delocalization in space and the 
number of particles, the faster the collapse

Many-body single-particle superpositions in space. 
Collapse very weak, modulo tiny deviations

Superpositions in other d.o.f. very weak if they 
do not imply delocalization in space



How to test collapse models
Interferometric experiments Non interferometric experiments

= center of mass

co
lla

ps
e

A collapse of the wave function changes the position of the 
center of mass ➔ Collapse-induced Brownian motion

Create a large superposition, in terms of mass, distance and 
duration, a perform a “double slit” experiment 

Prediction of 
quantum mechanics

(no environmental noise)

Prediction of 
collapse models

(no environmental noise)

+

Quantum prediction
(no environmental noise)

Collapse prediction
(no environmental noise)

S. Donadi, L. Ferialdi & A. Bassi, “Collapse dynamics are diffusive”, arXiv:2209.09697 



Advantages and disadvantages

Interferometric experiments Non interferometric experiments

co
lla

ps
e

They are a direct test of collapse models and an 
indirect test of the quantum superposition 
principle. 

They are easier because no quantum 
superposition is needed to test the collapse-
induced Brownian motion. 

These are a direct test of the quantum 
superposition principle and of collapse models.

They are difficult. The whole field of quantum 
optomechanics boomed also with the aim of 
creating macroscopic quantum states. 



How to test the collapse noise

Collapse models

A gas will expand (heat 
up) faster than what 
predicted by QM

Charged particles will 
emit radiation, whereas 
QM predicts no emission

A cantilever’s motion 
cannot be cooled down 

below a given limit

Quantum Mechanics



Tests of the CSL model
Two phenomenological parameters. 𝜆 measures the strength of the 
collapse, rC the space resolution of the collapse. m0 is a reference mass, 
equal to that of a nucleon
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• =   Theoretical guesses 

Lower bound: for such values of the 
parameters, the collapse is too weak and 
ineffective at the “macroscopic” level.
Working assumption: a graphene disk 
with N = 1011 amu, delocalized over d = 
10-5 m, should collapse in T = 10-2 s 
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Atom Interferometry
T. Kovachy et al., Nature 528, 530 
(2015) 

M = 87 amu
d = 0.54 m
T = 1 s

2 DECEMBER 2011    VOL 334    SCIENCE    www.sciencemag.org 1214

PERSPECTIVES

          I
n the movie Dances with Wolves, a lone 
wolf facilitates Lieutenant John Dunbar’s 
immersion into the complex culture of 

the Sioux Indians. This immersion required 
overcoming multiple cultural barriers. Ecol-
ogists and evolutionary biologists face an 
equally daunting challenge of understanding 
how environmental change affects ecological 
and evolutionary dynamics ( 1). Historically, 
researchers examined these impacts in isola-
tion. However, these dynamics can occur on 
similar time scales, resulting in a dynamic 
evolutionary-ecological feedback loop ( 2). 
Studying these feedbacks directly for long-
lived species is often thought to be imprac-
tical. On page 1275 of this issue, Coulson et 

al. ( 3) overcome this barrier using data from 
radio-collared gray wolves and state-of-the-
art mathematical models.

The 280 radio-collared wolves studied by 
Coulson et al. are direct descendants of 41 
gray wolves reintroduced into Yellowstone 
National Park between 1995 and 1997 ( 4). 
This reintroduction was part of a larger effort 
involving a simultaneous reintroduction in 
Idaho and a naturally colonized population 
in Montana. It was extremely successful; by 
2010, the Northern Rocky Mountain wolf 
population had expanded to 1651 individuals 
( 5). Individuals within this expanding popula-
tion vary substantially in body size, coat color, 
and other observable (phenotypic) traits. Coat 
color is particularly enigmatic; gray wolves 
in North America often have black coats, 
whereas in Eurasia black coats are rare, but 
the reason for this difference remains unclear 
( 6). These traits were recorded for over a 
decade (from 1998 to 2009) for each collared 
wolf and their offspring.

To explore the potential ecological and 
evolutionary responses of the gray wolves 

to environmental change, Coulson et al. fuse 
integral projection models (IPMs) with clas-
sical population genetics. Unlike their matrix 
model counterparts ( 7), IPMs describe the 
dynamics of populations with traits that vary 
continuously, such as body size ( 8), as well 
as discrete traits, such as coat color ( 9). Tra-
ditional IPMs track how the number of indi-
viduals with a particular body size changes 
due to births, deaths, and individual growth. 
The rules underlying these changes are deter-
mined by statistical relationships between the 
body size of individuals and their vital rates 
such as fecundity, survivorship, and growth.

In gray wolves, a change at a single loca-
tion on the genome—the K locus—deter-
mines coat color ( 10). To link evolution-
ary and ecological dynamics, Coulson et al. 
extend the IPM to account for this genetic 
difference between individuals. As a result, 
the statistical relationships between individ-
ual body size and vital rates become geno-

Mathematical Dances with Wolves

ECOLOGY

Sebastian J. Schreiber

Data and modeling of Yellowstone wolf 

populations illustrate the complex interrelated 

ecological and evolutionary responses to 

environmental change.

photon, it could have come 
from either of the diamond 
crystals in which one pho-
non was excited. The indis-
tinguishability of these two 
possibilities during detec-
tion means that the two dia-
mond samples coherently 
shared one phonon, which 
is the hallmark of a quan-
tum-entangled state.

The entanglement 
be tween the two diamond 
samples was confi rmed in 
experiments in which a second laser pulse 
de-excited the shared phonon and re-emitted 
a photon that was subsequently detected. By 
this method, Lee et al. demonstrate that the 
two diamonds share entanglement at a 98% 
confidence level. These results provide a 
striking example that entanglement is not par-
ticular to microscopic particles but can mani-
fest itself in the macroscopic world, where it 
could be used in future studies that make fun-
damental tests of quantum mechanics.

The demonstration of entanglement in 
macroscopic systems also has important 
implications for the ongoing efforts to realize 
quantum computation and communication. A 
full-size quantum computer eventually will 

need to be a macroscopic device in which 
entanglement is preserved and used over long 
times and distances. The lifetime of entangle-
ment in the experiment by Lee et al. is still too 
short for many quantum information applica-
tions, in part because of the room-temperature 
environment and the strong coupling of pho-
non modes in solids. However, the experiment 
emphasizes an important point, that ultrafast 
optical technology can alleviate the require-
ment on quantum coherence time. In future, 
with improvement of the ultrafast technology, 
or by using more isolated degrees of freedom 
in solids—such as as the nuclear spins ( 8) or 
the dopant rare-earth ions ( 9)—for quantum 
memory, many more quantum operations 

could be done within the coherence time of 
the solids, even at room temperature. 
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Making quantum connections. The method 
used by Lee et al. to generate entanglement 
between two macroscopic diamonds is illus-
trated. (A) A pumping laser pulse generates a 
correlated pair of a phonon inside the diamond 
as well as a scattered photon. (B) The scattered photons from two diamonds are brought together for interference and detection. 
When one photon is detected, the two diamonds coherently share a phonon. Thus, the quantum state created has the hallmarks 
of quantum entanglement.
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Interferometric Experiments

To improve interferometric tests, it will likely be necessary to go to micro-gravity environment in outer space → MAQRO 

Molecular Interferometry
Y.Y Fein et al., Nature Physics 15, 1242 (2019) 
M. Toros et al., PLA 381, 3921 (2017)

M = 105 amu
d = 10-7 m
T = 10-3 s

Entangling Diamonds
K. C. Lee et al., Science. 334, 1253 (2011).
S. Belli et al., PRA 94, 012108 (2016).
B. Schrinski et al., ArXiv:2209.06635.

M = 1016 amu
d = 10-11 m → in reality much smaller
T = 10-12 s
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Non - Interferometric Experiments

Cold atom gas

F. Laloë et al. Phys. Rev. A 90, 052119 (2014)
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Non - Interferometric Experiments
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X rays
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Non - Interferometric Experiments

Auriga

Ligo

Lisa Pathfinder

M. Carlesso et al. Phys. Rev. D 94, 124036 (2016) 
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the bar oscillator. We will consider both cases.
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FIG. 1: (Color online) Graphical representation of the three
experiments here considered; the images are not in scale.
LIGO on the top, LISA Pathfinder on the middle and AU-
RIGA is on the bottom. In LIGO, four identical cylindrical
masses (radius R, length L) are arranged as in Figure; a is
the distance between the center-of-mass of two masses on each
arm of the interferometer. The arms are oriented along the x
and y directions. LISA Pathfinder features two cubic (length
L) masses, displaced along the x direction with relative dis-
tance between their center-of-mass equal to a. AURIGA fea-
tures a cylindrical single mass (radius R, length L), aligned
with respect to the direction x of measurement.

The (mass proportional) CSL dynamics for the density
matrix ⇢̂(t) is [2]:

d

dt
⇢̂(t) = � �

2r3C⇡
3/2m2

0

Z
dz

h
M̂(z),

h
M̂(z), ⇢̂(t)

ii
,

(1)
where m0 is a reference mass chosen equal to the mass of
a nucleon, and M̂(z) is defined as follows:

M̂(z) = m0

X

n

e
� (z�q̂n)

2

2r2C , (2)

where the sum runs over the N nucleons of the system;
q̂n is the position operator of the n-th nucleon.

We divide the system in a subset of mass distributions,
labeled by ↵: for LISA Pathfinder two mass distributions
(↵ = 1, 2), while for LIGO we have 4 mass distributions,
but we will consider the two arms separately (so again
↵ = 1, 2), for AURIGA we have a single cylindrical dis-
tribution (↵ = 1). Then, the position operator q̂n can be
written as follows [17, 18]:

q̂n = q(0)
n,↵ +�q̂n,↵ + q̂↵, (3)

where q(0)
n,↵ is the classical equilibrium position of the n-

th particle (belonging to the ↵-th distribution), �q̂n,↵
measures the quantum displacement of the n-th particle
with respect to its classical equilibrium position and q̂↵
measures the fluctuations of the ↵-th mass distribution.
Under the assumption of rigid body, the latter fluctua-
tions are the same for all the particles belonging to the
↵-th distribution and therefore also for the ↵-th center-
of-mass, and �q̂n,↵ can be neglected. When the spread
of the center-of-mass wave-function is much smaller than
rC , Eq. (2) can be Taylor expanded up to the first order
in q̂↵:

M̂(z) ⇡ M0(z) +
X

↵

Z
dx

r2C
µ↵(x)e

� (z�x)2

2r2C (z � x) · q̂↵,

(4)
where M0(z) is a c-function, and µ↵(x) =

m0
P

n �
(3)(x � q(0)

n,↵) is the ↵-th mass distribution.
Here the sum runs on the nucleons belonging to the ↵-th
mass distribution. Eq. (1) becomes

d

dt
⇢̂(t) = �1

2

X

↵,�

X

i,j=x,y,z

⌘↵,�ij [q̂↵,i, [q̂�,j , ⇢̂(t)]] , (5)

where q̂↵,i is the i-th component of q̂↵, and the di↵usion
CSL rate is given by

⌘↵,�ij =
�

r7C⇡
3/2m2

0

Z
dz

Z
dx

Z
dy µ↵(x)µ�(y)·

· e
� (z�x)2

2r2C e
� (z�y)2

2r2C (z � x)i(z � y)j .

(6)

The dynamics in Eq. (1) can be mimicked by a stan-
dard Schrödinger equation with an additional stochastic
potential of the form

V̂CSL(t) = � ~
p
�

⇡3/4r3/2C m0

Z
dz M̂(z)w(z, t), (7)

where w(z, t) is a white noise with hw(z, t)i = 0 and
hw(z, t)w(y, s)i = �(t� s)�(3)(z � y). Such a stochastic
potential acts on the ↵-th mass distribution as a stochas-
tic force, which in the same limit of validity of the ex-
pansion in Eq. (4), becomes

F↵(t) =
~
p
�

⇡3/4m0

Z
dzdx

r7/2C

µ↵(x)e
� (z�x)2

2r2C (z � x)w(z, t).

(8)
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FIG. 1: (Color online) Graphical representation of the three
experiments here considered; the images are not in scale.
LIGO on the top, LISA Pathfinder on the middle and AU-
RIGA is on the bottom. In LIGO, four identical cylindrical
masses (radius R, length L) are arranged as in Figure; a is
the distance between the center-of-mass of two masses on each
arm of the interferometer. The arms are oriented along the x
and y directions. LISA Pathfinder features two cubic (length
L) masses, displaced along the x direction with relative dis-
tance between their center-of-mass equal to a. AURIGA fea-
tures a cylindrical single mass (radius R, length L), aligned
with respect to the direction x of measurement.

The (mass proportional) CSL dynamics for the density
matrix ⇢̂(t) is [2]:
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where m0 is a reference mass chosen equal to the mass of
a nucleon, and M̂(z) is defined as follows:

M̂(z) = m0
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n

e
� (z�q̂n)

2

2r2C , (2)

where the sum runs over the N nucleons of the system;
q̂n is the position operator of the n-th nucleon.

We divide the system in a subset of mass distributions,
labeled by ↵: for LISA Pathfinder two mass distributions
(↵ = 1, 2), while for LIGO we have 4 mass distributions,
but we will consider the two arms separately (so again
↵ = 1, 2), for AURIGA we have a single cylindrical dis-
tribution (↵ = 1). Then, the position operator q̂n can be
written as follows [17, 18]:

q̂n = q(0)
n,↵ +�q̂n,↵ + q̂↵, (3)

where q(0)
n,↵ is the classical equilibrium position of the n-

th particle (belonging to the ↵-th distribution), �q̂n,↵
measures the quantum displacement of the n-th particle
with respect to its classical equilibrium position and q̂↵
measures the fluctuations of the ↵-th mass distribution.
Under the assumption of rigid body, the latter fluctua-
tions are the same for all the particles belonging to the
↵-th distribution and therefore also for the ↵-th center-
of-mass, and �q̂n,↵ can be neglected. When the spread
of the center-of-mass wave-function is much smaller than
rC , Eq. (2) can be Taylor expanded up to the first order
in q̂↵:
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where M0(z) is a c-function, and µ↵(x) =
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P
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n,↵) is the ↵-th mass distribution.
Here the sum runs on the nucleons belonging to the ↵-th
mass distribution. Eq. (1) becomes
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where q̂↵,i is the i-th component of q̂↵, and the di↵usion
CSL rate is given by
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The dynamics in Eq. (1) can be mimicked by a stan-
dard Schrödinger equation with an additional stochastic
potential of the form

V̂CSL(t) = � ~
p
�

⇡3/4r3/2C m0

Z
dz M̂(z)w(z, t), (7)

where w(z, t) is a white noise with hw(z, t)i = 0 and
hw(z, t)w(y, s)i = �(t� s)�(3)(z � y). Such a stochastic
potential acts on the ↵-th mass distribution as a stochas-
tic force, which in the same limit of validity of the ex-
pansion in Eq. (4), becomes
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labeled by ↵: for LISA Pathfinder two mass distributions
(↵ = 1, 2), while for LIGO we have 4 mass distributions,
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written as follows [17, 18]:
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tions are the same for all the particles belonging to the
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A superconducting quantum interference device based read-out of a
subattonewton force sensor operating at millikelvin temperatures

O. Usenko, A. Vinante, G. Wijts, and T. H. Oosterkampa!

Leiden Institute of Physics, Leiden University, The Netherlands

!Received 4 January 2011; accepted 15 February 2011; published online 30 March 2011"

We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic
temperature. The technique is based on the use of a superconducting quantum interference device
to detect the magnetic flux change induced by a magnetized particle attached on the end of the
resonator. Unlike conventional interferometric techniques, our detection scheme does not involve
direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow
temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to
a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of
0.5 aN /#Hz. © 2011 American Institute of Physics. $doi:10.1063/1.3570628%

Due to its excellent sensitivity, optical interferometry is
the most widely used technique to detect the motion of ul-
trasensitive mechanical resonators, for applications which
range from magnetic resonance force microscopy !MRFM",1
investigation of quantum effects in mechanical systems,2 and
fundamental physics experiments.3 Unfortunately, optical de-
tection becomes hard to implement when the size of the reso-
nator is pushed to the nanoscale, because of the diffraction
limit, and when low or ultralow temperatures are required to
reduce the thermal force noise, as for single spin MRFM. In
the latter case, resonator heating due to light absorption is
found to limit the effective cooling of the resonator.4 This
problem can be partially circumvented only by substantially
reducing the input light power, at the price of reducing the
displacement sensitivity. Other techniques have been re-
cently demonstrated to be more compatible with ultralow
temperatures. In particular, both single electron transistors5

and microwave cavities6–8 have demonstrated outstanding
displacement sensitivity for the detection of nanomechanical
resonators at temperatures below 100 mK. So far, however,
their implementation has been limited to systems where de-
tector and resonator are tightly integrated, which is not prac-
tical for scanning probe applications. Moreover, for micro-
wave techniques the direct photon absorption still remains an
issue at millikelvin temperatures, which again can only be
mitigated by reducing the input power. Displacement sensors
based on quantum point contacts have also been demon-
strated in an off-board setup9 but so far their use has been
limited to liquid helium temperature.

In this letter, we demonstrate a rather simple alternative
detection technique, based on the use of a dc superconduct-
ing quantum interference device !SQUID", which in prin-
ciple does not require any power to be directly dissipated in
the mechanical resonator. Our method involves attaching a
ferromagnetic particle to the end of the resonator $Fig. 1!a"%
which, whenever the resonator moves, causes a change in
magnetic flux in a superconducting detection coil, positioned
close to the resonator $Fig. 1!b"%. A cantilever displacement x
is thus converted into a coil flux !="x, where the constant "
is proportional to the magnetic moment # of the ferromag-

netic particle and depends in a complex way on the coil
geometry and the relative position and orientation of mag-
netic moment and coil. The flux change in the detection coil
is measured by the dc SQUID amplifier via a superconduct-
ing flux transformer of total inductance Lt, which includes a
calibration transformer and the SQUID input coil.

In our experiment, we use a silicon resonator consisting
of a 100 nm thick single crystal beam, 5 #m wide and

a"Electronic mail: usenko@physics.leidenuniv.nl.

FIG. 1. !a" An electron microscopy image of the silicon resonator with a
magnetic sphere attached to its end. The single crystal beam is 100 nm thick,
5 #m wide, and 100 nm long. The 4.5 #m diameter magnetic sphere is
made of a neodymium based alloy with remanence Br=0.75 T. The fre-
quency of the lowest flexural mode of the resonator is 3084 Hz, with a
quality factor of 3.8$104. !b" Circuit diagram illustrating the detection
scheme. The motion x of the resonator induces a flux !="x in the detection
coil and a current I=−! /Lt in the superconducting detection loop, which is
measured by the dc SQUID.

APPLIED PHYSICS LETTERS 98, 133105 !2011"

0003-6951/2011/98"13!/133105/3/$30.00 © 2011 American Institute of Physics98, 133105-1 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
140.105.16.64 On: Thu, 03 Dec 2015 09:34:06
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We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic
temperature. The technique is based on the use of a superconducting quantum interference device
to detect the magnetic flux change induced by a magnetized particle attached on the end of the
resonator. Unlike conventional interferometric techniques, our detection scheme does not involve
direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow
temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to
a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of
0.5 aN /#Hz. © 2011 American Institute of Physics. $doi:10.1063/1.3570628%

Due to its excellent sensitivity, optical interferometry is
the most widely used technique to detect the motion of ul-
trasensitive mechanical resonators, for applications which
range from magnetic resonance force microscopy !MRFM",1
investigation of quantum effects in mechanical systems,2 and
fundamental physics experiments.3 Unfortunately, optical de-
tection becomes hard to implement when the size of the reso-
nator is pushed to the nanoscale, because of the diffraction
limit, and when low or ultralow temperatures are required to
reduce the thermal force noise, as for single spin MRFM. In
the latter case, resonator heating due to light absorption is
found to limit the effective cooling of the resonator.4 This
problem can be partially circumvented only by substantially
reducing the input light power, at the price of reducing the
displacement sensitivity. Other techniques have been re-
cently demonstrated to be more compatible with ultralow
temperatures. In particular, both single electron transistors5

and microwave cavities6–8 have demonstrated outstanding
displacement sensitivity for the detection of nanomechanical
resonators at temperatures below 100 mK. So far, however,
their implementation has been limited to systems where de-
tector and resonator are tightly integrated, which is not prac-
tical for scanning probe applications. Moreover, for micro-
wave techniques the direct photon absorption still remains an
issue at millikelvin temperatures, which again can only be
mitigated by reducing the input power. Displacement sensors
based on quantum point contacts have also been demon-
strated in an off-board setup9 but so far their use has been
limited to liquid helium temperature.

In this letter, we demonstrate a rather simple alternative
detection technique, based on the use of a dc superconduct-
ing quantum interference device !SQUID", which in prin-
ciple does not require any power to be directly dissipated in
the mechanical resonator. Our method involves attaching a
ferromagnetic particle to the end of the resonator $Fig. 1!a"%
which, whenever the resonator moves, causes a change in
magnetic flux in a superconducting detection coil, positioned
close to the resonator $Fig. 1!b"%. A cantilever displacement x
is thus converted into a coil flux !="x, where the constant "
is proportional to the magnetic moment # of the ferromag-

netic particle and depends in a complex way on the coil
geometry and the relative position and orientation of mag-
netic moment and coil. The flux change in the detection coil
is measured by the dc SQUID amplifier via a superconduct-
ing flux transformer of total inductance Lt, which includes a
calibration transformer and the SQUID input coil.

In our experiment, we use a silicon resonator consisting
of a 100 nm thick single crystal beam, 5 #m wide and
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FIG. 1. !a" An electron microscopy image of the silicon resonator with a
magnetic sphere attached to its end. The single crystal beam is 100 nm thick,
5 #m wide, and 100 nm long. The 4.5 #m diameter magnetic sphere is
made of a neodymium based alloy with remanence Br=0.75 T. The fre-
quency of the lowest flexural mode of the resonator is 3084 Hz, with a
quality factor of 3.8$104. !b" Circuit diagram illustrating the detection
scheme. The motion x of the resonator induces a flux !="x in the detection
coil and a current I=−! /Lt in the superconducting detection loop, which is
measured by the dc SQUID.
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