## Collapse models make particles jiggle... and emit photons

The Hitchhiker's Advanced Guide to Quantum Collapse Models and their impact in science, philosophy, technology and biology
$31^{\text {st }}$ October $-4^{\text {th }}$ November 2022
Angelo Bassi
University of Trieste \& INFN - Italy

## Quantum superpositions



Microscopic superpositions
Experimentally verified
Cats are made of atoms + linearity of the theory


## Standard Quantum Mechanics



The wave function gives the probabilities of outcomes of measurements

The Copenhagen interpretation assumes a mysterious division between the microscopic world governed by quantum mechanics and a macroscopic world of apparatus and observers that obeys classical physics [...]

## Spontaneous wave function collapse

Quantum world


Wave


Classical world


Smooth transition

The Schrödinger equation is modified. The new dynamics is nonlinear in such a way to describe the quantum micro-world, the classical macro-world, as well as the transition from one to the other.

## The dynamics of collapse models

$$
\begin{aligned}
\mathrm{d}\left|\psi_{t}\right\rangle= & {\left[-\frac{i}{\hbar} \hat{H} \mathrm{~d} t+\int \mathrm{d}^{3} \mathbf{x}\left(\hat{M}(\mathbf{x})-\langle\hat{M}(\mathbf{x})\rangle_{t}\right) \mathrm{d} W_{t}(\mathbf{x})\right.} \\
& \left.-\frac{1}{2} \iint \mathrm{~d}^{3} \mathbf{x} \mathrm{~d}^{3} \mathbf{y} \mathcal{G}(\mathbf{x}-\mathbf{y})\left(\hat{M}(\mathbf{x})-\langle\hat{M}(\mathbf{x})\rangle_{t}\right)\left(\hat{M}(\mathbf{y})-\langle\hat{M}(\mathbf{y})\rangle_{t}\right) \mathrm{d} t\right]\left|\psi_{t}\right\rangle
\end{aligned}
$$

Quantum mechanics + collapse in space

## Nonlinear <br> Stochastic

$M(\mathbf{x})=m a^{\dagger}(\mathbf{x}) a(\mathbf{x}) \quad\langle M(\mathbf{x})\rangle_{t}=\left\langle\psi_{t}\right| M(\mathbf{x})\left|\psi_{t}\right\rangle$
Collapse operator $\sim$ position
$\mathbb{E}\left[d W_{t}(\mathbf{x})\right]=0 \quad \mathbb{E}\left[d W_{t}(\mathbf{x}) d W_{t}(\mathbf{y})\right]=\mathcal{G}(\mathbf{x}-\mathbf{y}) d t$
Noise driving the collapse

$$
\mathcal{G}(\mathbf{x})=\frac{\lambda}{m_{0}^{2}} e^{-\mathbf{x}^{2} / 4 r_{\mathrm{C}}^{2}}
$$

$$
\mathcal{G}(\mathbf{x})=\frac{G}{\hbar} \frac{1}{|\mathbf{x}|}
$$

CSL model
P. Pearle, Phys. Rev. A 39, 2277 (1989).

DP model

## Collapse dynamics in a nutshell


$\uparrow+\downarrow$

Superpositions in other d.o.f. very weak if they do not imply delocalization in space
Collapse very weak, modulo tiny deviations

## How to test collapse models

## Interferometric experiments

Create a large superposition, in terms of mass, distance and duration, a perform a "double slit" experiment


Prediction of quantum mechanics (no environmental noise)


Prediction of collapse models
(no environmental noise)

## Non interferometric experiments

S. Donadi, L. Ferialdi \& A. Bassi, "Collapse dynamics are diffusive", arXiv:2209.09697


A collapse of the wave function changes the position of the center of mass $\rightarrow$ Collapse-induced Brownian motion


Quantum prediction (no environmental noise)


Collapse prediction (no environmental noise)

## Advantages and disadvantages

## Interferometric experiments

These are a direct test of the quantum superposition principle and of collapse models.

They are difficult. The whole field of quantum optomechanics boomed also with the aim of creating macroscopic quantum states.

## Non interferometric experiments

They are a direct test of collapse models and an indirect test of the quantum superposition principle.

They are easier because no quantum superposition is needed to test the collapseinduced Brownian motion.

## How to test the collapse noise

Quantum Mechanics


A gas will expand (heat up) faster than what predicted by QM


Collapse models



Charged particles will emit radiation, whereas
QM predicts no emission


A cantilever's motion cannot be cooled down
below a given limit


## Tests of the CSL model

$$
\mathcal{G}(\mathbf{x})=\frac{\lambda}{m_{0}^{2}} e^{-\mathbf{x}^{2} / 4 r_{\mathrm{C}}^{2}}
$$

Two phenomenological parameters. $\lambda$ measures the strength of the collapse, $r_{c}$ the space resolution of the collapse. $m_{0}$ is a reference mass, equal to that of a nucleon


- = Theoretical guesses

Lower bound: for such values of the parameters, the collapse is too weak and ineffective at the "macroscopic" level. Working assumption: a graphene disk with $\mathrm{N}=10^{11} \mathrm{amu}$, delocalized over $\mathrm{d}=$ $10^{-5} \mathrm{~m}$, should collapse in $\mathrm{T}=10^{-2} \mathrm{~s}$

## Interferometric Experiments



Atom Interferometry
T. Kovachy et al., Nature 528, 530 (2015)
$\mathrm{M}=87 \mathrm{amu}$
$\mathrm{d}=0.54 \mathrm{~m}$
$\mathrm{T}=1 \mathrm{~s}$

Molecular Interferometry
Y.Y Fein et al., Nature Physics 15, 1242 (2019) M. Toros et al., PLA 381, 3921 (2017)
$\mathrm{M}=10^{5} \mathrm{amu}$
$\mathrm{d}=10^{-7} \mathrm{~m}$
$\mathrm{T}=10^{-3} \mathrm{~s}$


Entangling Diamonds
K. C. Lee et al., Science. 334, 1253 (2011).
S. Belli et al., PRA 94, 012108 (2016).
B. Schrinski et al., ArXiv:2209.06635.
$\mathrm{M}=10^{16} \mathrm{amu}$
$\mathrm{d}=10^{-11} \mathrm{~m} \rightarrow$ in reality much smaller
$\mathrm{T}=10^{-12} \mathrm{~s}$

To improve interferometric tests, it will likely be necessary to go to micro-gravity environment in outer space $\rightarrow$ MAQRO

## Non - Interferometric Experiments



## Non - Interferometric Experiments



X rays
S.L. Adler et al., Jour. Phys. A 40, 13395 (2009) S.L. Adler et al., Journ. Phys. A 46, 245304 (2013) A. Bassi \& S. Donadi, Annals of Phys. 340, 70 (2014)
S. Donadi \& A. Bassi, Jounr. Phys. A 48, 035305 (2015)
C. Curceanu et al., J. Adv. Phys. 4, 263 (2015)

+ several more


## Non - Interferometric Experiments



Auriga
Ligo
Lisa Pathfinder
M. Carlesso et al. Phys. Rev. D 94, 124036 (2016)


## Non - Interferometric Experiments



## Non - Interferometric Experiments



Cantilever - update 1
A. Vinante et al., Phys. Rev. Lett. 119, 110401 (2017).


## Non - Interferometric Experiments



## Non - Interferometric Experiments



## Acknowledgments

## The Group (www.qmts.it)

- Postdocs: S. Donadi, J.L. Gaona Reyes
- Ph.D. students: F. Cesa, L. Figurato, A. Ghundi, M. Vischi, G. Di Bartolomeo

UNIVERSITÀ DEGLI STUDI DITRIESTE

