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Cosmic microwave background radiation

1 The very early universe comprised of a hot and dense `soup' of

particles. In this state photons were constantly scattered by

the electrons 1.

2 As the universe expanded and cooled, at a certain epoch called

recombination, electrons were trapped by the protons to form

Hydrogen atoms subsequently allowing photons to travel in

straight lines.

3 After recombination, every point in space can be considered a

source of light, and therefore also receives light from all

directions.

1D. Baumann, Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the
Large and the Small (2011) pp. 523�686 ,
Stuart R. Lange, The Time Evolution of the Cosmic Microwave Background Photosphere
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Motivation for in�ation

1

2 CMB photons that we see today were emitted in the remote

past. The temperature of the radiation is almost the same in

all directions.

3 These sources of the CMB photons must therefore have been

in causal contact at some point before recombination.

4 To achieve this we need a �nite phase of rapid accelerated

expansion, such that the universe becomes extremely small

very rapidly going backwards in time, allowing the di�erent

spatial points to come into causal contact.
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In�ation

1 In�ationary dynamics is governed by the action

S =

∫
d
4x
√
−g
[
M2

P

2
R − 1

2
gµν∂µφ∂νφ− V (φ)

]
, (1)

with

gµν = a2(η)(−dη2 + dx2) . (2)

2

0 2 4 6 8 10
Φ�MP

V
HΦL
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Inhomogeneities

1 Temperature variations from the mean value of 2.7K have

been observed, with the rms value of order 10−5K 2.

2 In�ation explains them through quantum �uctuations living on

a classical background.

3 In a proper treatment 3 one sends φ→ φ̄(η) + δφ(η, x) , and
gµν → ḡµν(η) + δgµν(η, x) .

4 The essentials can be captured by keeping gravity classical,

and the in�ationary potential constant (like a cosmological

constant scenario) 4.

5 The Lagrangian for the perturbations reduces to

L = −
√
−g 1

2
gµν∂µδφ∂νδφ.

2Smoot G F et al, Ap. J. Lett. 396 L1 (1992)
3P. Peter and J.-P. Uzan, Primordial Cosmology, Oxford Graduate Texts (Oxford University Press,

2013).
4D. Polarski and A. A. Starobinsky, Class. Quant. Grav. 13, 377 (1996).
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Quantum �uctuations

1 Using the �at FLRW metric, and de�ning

u(x, η) := a(η)δφ(x, η), we get

2 L = 1

2

[(
u̇ − ȧ

au
)2 − (∂iu)2

]
.

3 u(k)→ û(k) = vk(η)â(k, η0) + v∗k (η)â†(−k, η0).

4 Time evolution is determined by solving the equation of

motion v̈k(η) +
(
k2 − ä

a

)
vk(η) = 0.

5 Having determined the dynamics in the Heisenberg picture,

assuming that initially the state of the universe was in the

vacuum state â(k, η0) |0〉 = 0, the probability for the

perturbations to have a con�guration u(k, η) can be

determined.
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Quantum �uctuations and the power spectrum

1 P = 1

πσ2k
exp
{
− |u(k,η)|

2

σ2k

}
, σ2k = |vk(η)|2.

2 The statistics of the observed temperature anisotropy can be

ultimately determined by computing the power spectrum which

is de�ned in terms of the two-point correlation.

3 〈0| û(x)û(x′) |0〉 = C(x, x′) :=
∫
d ln(k)Pu(k , η) sin(kr)kr .

4 Pu(k, η) = k3

2π2
|vk(η)|2 , r := |x− x′| .

5 Observations ultimately constrain the power spectrum of the

comoving curvature perturbation R ≡ ψ + Hδφ

φ̇
.

6 Modifying the Schrödinger equation as in collapse models,

implies a modi�ed time evolution of the perturbations and a

modi�ed power spectrum.
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Collapse dynamics

The mass proportional CSL model is de�ned through the following

stochastic di�erential equation 1

d |ψ〉 =[
−i Ĥdt +

√
γ

m0

∫
dx
[
M̂(x)− 〈M̂(x)〉

]
dWt(x)

− γ

2m2

0

∫
dxdy

[
M̂(x)− 〈M̂(x)〉

]
G (x− y)

[
M̂(y)− 〈M̂(y)〉

]
dt

]
|ψ〉 ,

(3)

E [ξt(x)ξt′(y)] = G (x− y)δ(t − t ′), G (x− y) =
e
− (x−y)2

4r2c

(4πr2c )3/2
.

(4)

1A. Bassi and G. Ghirardi, Phys. Rep. 379, 257 (2003).
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Modi�cations from collapse dynamics

d |ψ〉
dt

= −i
[
Ĥ +

√
γ

m0

∫
dx M̂(x)ξt(x)

]
|ψ〉 . (5)

For the purpose of computing modi�cations to observables due to

CSL dynamics, it is su�cient to study instead the equation above

since it leads to the same master equation.
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Modi�cations from collapse dynamics

1 Treat ĤCSL =
√
γ

m0

∫
dxM̂(x)ξt(x) as a perturbation,

〈Ô〉 = 〈Ô〉0 − 1

~2
∫ t
t0

∫ t′

t0
dt ′dt ′′〈[ĤCSL(t ′), [ĤCSL(t ′′), Ô]]〉+ ...

2 Compute its e�ect on the comoving curvature perturbation

〈R̂2〉 ≡
∫
PR(k)d ln k .
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Possible choices of the collapse operator

1 In the mass proportional CSL model M̂(x) =
∑

j mj â
†
j (x)âj(x).

2 The collapse operator M̂(x) was taken to be the matter energy

density in J. Martin and V. Vennin, Phys. Rev. Lett.124,

080402 (2020). However, this choice rules out the parameter

values allowed by laboratory experiments as consistency with

observations requires λ(∝ γ/r3c ) . 10−90s−1.

3 In A. Gundhi, J. L. Gaona-Reyes, M. Carlesso and A. Bassi,

Phys. Rev. Lett. 127, 091302 (2021), we took the collapse

operator to be proportional the Hamiltonian density.
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Results

The correction to the in�ationary spectrum was obtained to be

δPR = −17
36

λH3

π2εM2

P
m2

0

ln

(
ηe
η0

)
. (6)

The observational constraints demand λ < 107s−1, compatible with

observational constraints.
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