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Why Fermi-Dirac and Bose-Einstein 
are distinct? 
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Why Fermi-Dirac and Bose-Einstein 
are distinct? 

 
WE DON’T KNOW
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Beyond Standard Model…
Green’s general quantum field: paronic particles


Order 1: fermionic/bosonic fields

Order>1: parafermionic/parabosonic fileds

Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/
paraboson (and vice-versa)

Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states


Non-Commutative Quantum Gravity 
θ-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)
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How about so far?
Ramberg and Snow (1988): 

DAMA (2009): 

Borexino (2011): 


Models scenarios implications 

Democratic scenario 
all type of particles have the same degree of violation 

β2/2 ≲ 10−26

β2/2 ≲ 10−47

β2/2 ≲ 10−60

β
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How about so far?
Ramberg and Snow (1988): , lepton–lepton case
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How about so far?
Ramberg and Snow (1988): , lepton–lepton case

DAMA (2009): , hadron–lepton case

Borexino (2011): , hadron–hadron case


Models scenarios implications 

Democratic scenario 
all type of particles have the same degree of violation  

Despotic scenario 
each type of particle has its degree of violation 


β2/2 ≲ 10−26

β2/2 ≲ 10−47

β2/2 ≲ 10−60

β

βi
?



X-Rays
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VIP group
VIolation of Pauli Exclusion Principle

Open Systems 
testing newly injected 

electrons

Close System 
testing spontaneous 

emissions

VIP-Lead BEGe
VIP

VIP-2

VIP-3 GATOR
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VIP group
VIolation of Pauli Exclusion Principle

Open Systems 
testing newly injected 

electrons

Close System 
testing spontaneous 

emissions

VIP-Lead BEGe
VIP

VIP-2

VIP-3

β2/2 ≲ 4.7 10−29

GATOR[Future]

[THIS WORK!] NCQG
+Wave Function Collapse (CSL, DP) [see Kristian Piscicchia’s and Fabrizio Napolitano’s talks]
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VIP-2

Target: Copper strips

WITHOUT CURRENT configuration: regime 
case (stable states: background)

WITH CURRENT configuration (180 A): dynamic 
case (PEP violation through electron capture)


SDD: 32 detectors by SDDs, stably kept  @ 
 °C even with the current in Cu


@LNGS Underground (beneath Gran Sasso 
Mountain – IT): ~1400 m of rock shielding

−170+1
−0



Data model
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26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni



Data model
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26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni

ℱwoc(θ, y) = y1 × Ni(θ1, θ2)+y2 × Cu(θ3, θ4)+y3 × pol1(θ5)+𝒮 × PEPV(θ4)



26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni

Data model
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ℱwc(θ, y, 𝒮) = y1 × Ni(θ1, θ2)+y2 × Cu(θ3, θ4)+y3 × pol1(θ5)+𝒮 × PEPV(θ4)

7729 eV

~ –300 eV with 
respect to Kα Cu 
(electron shielding)

Same Kα Cu 
resolution (i.e., σ 
of the detector)



Data Likelihood
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26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni
PEPV

ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮) = Poiss(𝒟wc |ℱwc(θ, y, 𝒮)) × Poiss(𝒟woc |ℱwoc(θ, y × ℛ))

Ratio of data 
acquisition time

[mind: ,   are data,  is the model]Poiss(𝒟 |ℱ) =
ℱ𝒟

𝒟!
e−ℱ 𝒟 ℱ



Bayesian approach
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26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni
PEPV

p(θ, y, 𝒮 |𝒟wc, 𝒟woc) =
ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)

∫ dθdyℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)



Bayesian approach
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p(θ, y, 𝒮 |𝒟wc, 𝒟woc) =
ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)

∫ dθdyℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)

26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni
PEPV

Priors of  and  
are Gaussians: 
statistical 
fluctuations 
around known 
values

Prior of  is flat, 
limited from 
previous 
experiments

Systematic 
uncertainties 
included

θ y

𝒮

Posterior
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p(𝒮 |𝒟wc, 𝒟woc) = ∫ p(θ, y, 𝒮 |𝒟wc, 𝒟woc)dθdy

Bayesian result

Integrals with Markov Chain Monte Carlo method

p(
S
|D

w
c ,

D
w
oc
)

S

(marginalized Posterior)



one-sided Likelihood Test statistic

Modified frequentist CLs
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t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
ℒ( ̂ ̂θ, ̂ŷ, 𝒮)
ℒ( ̂θ, ŷ, �̂�)



Modified frequentist CLs
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t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
ℒ( ̂ ̂θ, ̂ŷ, 𝒮)
ℒ( ̂θ, ŷ, �̂�)

Profile Likelihood; 
 now includes multiplicative penalties 

given by experimental uncertainties: i.e., 
the priors in the Bayesian


ℒ

ℒ(θ, y, 𝒮) = ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)

one-sided Likelihood Test statistic
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ℒ( ̂θ, ŷ, �̂�)
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𝒮

𝒮

Profile Likelihood; 
 now includes multiplicative penalties 

given by experimental uncertainties: i.e., 
the priors in the Bayesian


ℒ

ℒ(θ, y, 𝒮) = ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)
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∞

tobs
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1 − p0
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CLs result

Computation with RooFit

}CLs expected in 
case of  
but measured 

𝒮 = 0
𝒮

CLs expected with 
measured 𝒮

line of p-value = 0.1
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CLs result

Computation with RooFit

}CLs expected in 
case of  
but measured 
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CLs expected with 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line of p-value = 0.1

Background Hypothesis 
as Asimov Dataset 

(generated ideal dataset most likely 
representing the model)

t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
ℒ( ̂ ̂θ, ̂ŷ, 𝒮)
ℒ( ̂θ, ŷ, �̂�)

p𝒮 = ∫
∞

tobs

f(t𝒮 |𝒮)dt𝒮 CLs =
p𝒮

1 − p0
< 1 − C.L.



From  to 𝓢 β2/2
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Nx ≃
β2

2
⋅ Nnew ⋅

Nint
10

⋅ 7.25 × 10−2
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This is our !𝒮
Nx ≃

β2
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From  to 𝓢 β2/2
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This is our !𝒮

Newly injected electrons! 

 (   for simplicity)
runs

∑
i

IiΔti /e = IΔt/e

Nx ≃
β2

2
⋅ Nnew ⋅

Nint
10

⋅ 7.25 × 10−2
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From  to 𝓢 β2/2
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This is our !𝒮 efficiency simulated: 
considered X-ray 
absorption + geometry 
acceptance + SDDs 
efficiency

Newly injected electrons! 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This is our !𝒮 efficiency simulated: 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efficiency
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⋅
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⇒
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Number of interactions; 
every ~10 interactions, 1 cascade



From  to 𝓢 β2/2
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This is our !𝒮 efficiency simulated: 
considered X-ray 
absorption + geometry 
acceptance + SDDs 
efficiency

Newly injected electrons! 

 (   for simplicity)
runs

∑
i

IiΔti /e = IΔt/e

β2

2
≃ 𝒮 ⋅

10
Nint

⋅
e

IΔt
⋅

1
7.25 × 10−2

⇒

 is the normalization that decides the order of magnitude of 

Let’s discuss –atoms interaction Models!

Nint β2/2
e

Nx ≃
β2

2
⋅ Nnew ⋅

Nint
10

⋅ 7.25 × 10−2

Number of interactions; 
every ~10 interactions, 1 cascade



 by Linear ScatteringNint
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D

e

1μ 2μ 3μ 4μ 5μ 6μ

Through Copper Resistance, 
we know the average interaction length μ

Nint = D/μ ≃ 1.95 × 106

⇒
β2

2
⪅ 10−31



Through Diffusion-Transport theory and Copper atomic density, 
we know:


• the average time  on atomic encounter for a diffused electron

• the average time  of target crossing by an electron

τE
T

Diffusion

 by Close EncountersNint
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T

e

Reservoir

τE

Nint = T/τE ≃ 4.29 × 1017

⇒
β2

2
⪅ 10−43



TO DO: a quantum ?Nint
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e ⟩

Cui ⟩

How many interactions between Cu atomic and electron fields occur?



Outlook
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How to high sensitivity measurement in Open System? 
Data Analysis 

Bayesian 
Well established: excellent for low statistical signals

Systematic uncertainty is the combination of different priors for the various factors


CLs 
Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very 
low relative to the expectation of the background-only hypothesis: the lower/upper limit 
might be anomalously low; more robust compared to the classic p-value

Sensible to small parameter fluctuations


 modelling 
Linear Scattering: due to phonons and lattice irregularities


Safest hypothesis

Largely underestimation of how many interactions an electron does 


Close Encounters: a more realistic model of -atom encounters, but still approximated

12 order of magnitudes larger than Linear Scattering!


This is the key element to improve the measurement!

Nint

e
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Systematic uncertainty is the combination of different priors for the various factors
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Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very 
low relative to the expectation of the background-only hypothesis: the lower/upper limit 
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 modelling 
Linear Scattering: due to phonons and lattice irregularities


Safest hypothesis

Largely underestimation of how many interactions an electron does 


Close Encounters: a more realistic model of -atom encounters, but still approximated

12 order of magnitudes larger than Linear Scattering!


This is the key element to improve the measurement! 

THANK YOU

Nint

e


