

High sensitivity analysis on Pauli's Exclusion Principle violation with VIP-2

$H = T + V = \frac{\|\mathbf{p}\|^{2}}{2m} + V(\vec{x}, y, z) \neq \text{Alessio Porcelli}$ $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle + \hat{H} |\psi$

Quantum Collapse Models

31 October 2022

and their impact in science, philosophy, technology, and biology

Why Fermi-Dirac and Bose-Einstein are distinct?

Why Fermi-Dirac and Bose-Einstein are distinct?

WE DON'T KNOW

Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states

Non-Commutative Quantum Gravity

Ø-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states

Non-Commutative Quantum Gravity

Both break the anti-/symmetric commutativity with a coefficient β .

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states

Non-Commutative Quantum Gravity

Ø-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

Both break the anti-/symmetric commutativity with a coefficient β .

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states

Mon-Commutative Quantum Gravity

Ø-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

Both break the anti-/symmetric commutativity with a coefficient β .

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

How about so far?

Amberg and Snow (1988): $β^2/2 ≤ 10^{-26}$ **MAA (2009):** $β^2/2 ≤ 10^{-47}$ **Borexino (2011):** $β^2/2 ≤ 10^{-60}$

Models scenarios implications

Democratic scenario

all type of particles have the same degree of violation meta

How about so far?

^𝔅 **Ramberg and Snow (1988):** $\beta^2/2 \leq 10^{-26}$, lepton–lepton case ^𝔅 **DAMA (2009):** $\beta^2/2 \leq 10^{-47}$, hadron–lepton case ^𝔅 **Borexino (2011):** $\beta^2/2 \leq 10^{-60}$, hadron–hadron case

Models scenarios implications

all type of particles have the same degree of violation meta

Despotic scenario

each type of particle has its degree of violation β_i

How about so far?

^{*} Ramberg and Snow (1988): $\beta^2/2 \leq 10^{-26}$, lepton–lepton case ^{*} DAMA (2009): $\beta^2/2 \leq 10^{-47}$, hadron–lepton case ^{*} Borexino (2011): $\beta^2/2 \leq 10^{-60}$, hadron–hadron case

Models scenarios implications

Democratic scenario

all type of particles have the same degree of violation meta

Despotic scenario

each type of particle has its degree of violation β_i

VIP-2

- **SDD**: 32 detectors by SDDs, stably kept @ -170^{+1}_{-0} °C even with the current in Cu
- @LNGS Underground (beneath Gran Sasso Mountain – IT): ~1400 m of rock shielding

Data model

Data model

 $\mathscr{F}^{woc}(\theta, y) = y_1 \times Ni(\theta_1, \theta_2) + y_2 \times Cu(\theta_3, \theta_4) + y_3 \times pol_1(\theta_5)$

Data model

 $\mathscr{F}^{wc}(\theta, y, \mathscr{S}) = y_1 \times Ni(\theta_1, \theta_2) + y_2 \times Cu(\theta_3, \theta_4) + y_3 \times \text{pol}_1(\theta_5) + \mathscr{S} \times PEPV(\theta_4)$

Data Likelihood

Bayesian approach

$$p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S} \mid \mathcal{D}^{wc}, \mathcal{D}^{woc}) = \frac{\mathscr{L}(\mathcal{D}^{wc}, \mathcal{D}^{woc} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})}{\int d\boldsymbol{\theta} d\boldsymbol{y} \mathscr{L}(\mathcal{D}^{wc}, \mathcal{D}^{woc} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})}$$

Bayesian approach

Bayesian result

(marginalized Posterior) $p(\mathcal{S} \mid \mathcal{D}^{wc}, \mathcal{D}^{woc}) = \int p(\theta, y, \mathcal{S} \mid \mathcal{D}^{wc}, \mathcal{D}^{woc}) d\theta dy$

Integrals with Markov Chain Monte Carlo method

one-sided Likelihood Test statistic

$$\mathbf{X}_{\mathcal{S}} = -2\ln\Lambda(\mathcal{S}) = -2\ln\frac{\mathscr{L}(\hat{\hat{\boldsymbol{\theta}}}, \hat{\hat{\mathbf{y}}}, \mathcal{S})}{\mathscr{L}(\hat{\boldsymbol{\theta}}, \hat{\mathbf{y}}, \hat{\mathcal{S}})}$$

one-sided Likelihood Test statistic

 $t_{\mathcal{S}} = -2\ln\Lambda(\mathcal{S}) = -2\ln\frac{\mathscr{L}(\hat{\theta}, \hat{\hat{y}}, \mathcal{S})}{\widehat{\mathcal{L}}(\hat{\theta}, \hat{\hat{y}}, \mathcal{S})}$

one-sided Likelihood Test statistic

Profile Likelihood; \checkmark \mathscr{L} now includes multiplicative penalties given by experimental uncertainties: i.e.,

the priors in the Bayesian

 $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) = \mathcal{L}(\mathcal{D}^{wc}, \mathcal{D}^{woc} | \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})$

 $\hat{\theta}, \hat{y}, \hat{S}$ are the values that maximize the Likelihood; i.e., the denominator is the standard maximum Likelihood

CL_s result

CL_s result

From $\delta to \beta^2/2$

$$N_x \simeq \frac{\beta^2}{2} \cdot N_{\text{new}} \cdot \frac{N_{\text{int}}}{10} \cdot 7.25 \times 10^{-2}$$

From $\delta to \beta^2/2$

From S to $\beta^2/2$

From $\delta to \beta^2/2$

From $\delta to \beta^2/2$

From $\delta to \beta^2/2$

 N_{int} is the normalization that decides the order of magnitude of $\beta^2/2$ Let's discuss *e*-atoms interaction Models!

Nint by Linear Scattering

Through Copper Resistance, we know the average interaction length μ

$$\frac{N_{\text{int}}}{\Rightarrow} \frac{\beta^2}{2} \lessapprox 10^{-31}$$

N_{int} by Close Encounters

Through Diffusion-Transport theory and Copper atomic density, we know:

- the average time τ_E on atomic encounter for a diffused electron
- the average time T of target crossing by an electron

Λ

$$V_{\text{int}} = T/\tau_E \simeq 4.29 \times 10^{17}$$
$$\Rightarrow \frac{\beta^2}{2} \lessapprox 10^{-43}$$

TO DO: a quantum N_{int}?

How many interactions between Cu atomic and electron fields occur?

Outlook How to high sensitivity measurement in Open System? Data Analysis

Bayesian

- Well established: excellent for low statistical signals
- Systematic uncertainty is the combination of different priors for the various factors

CLs

- Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very low relative to the expectation of the background-only hypothesis: the lower/upper limit might be anomalously low; more robust compared to the classic p-value
- Sensible to small parameter fluctuations

N_{int} modelling

- Linear Scattering: due to phonons and lattice irregularities
 Safest hypothesis
 - X Largely underestimation of how many interactions an electron does
- Close Encounters: a more realistic model of *e*-atom encounters, but still approximated 12 order of magnitudes larger than Linear Scattering!
- This is the key element to improve the measurement!

Outlook How to high sensitivity measurement in Open System? **Data Analysis**

Bayesian

- Well established: excellent for low statistical signals
- Systematic uncertainty is the combination of different priors for the various factors

- Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very low relative to the expectation of the background-only hypothesis: the lower/upper limit might be anomalously low; more robust compared to the classic p-value
- Sensible to small parameter fluctuations

N_{int} modelling

- Linear Scattering: due to phonons and lattice irregularities Safest hypothesis
 - Largely underestimation of how many interactions an electron does
- Close Encounters: a more realistic model of *e*-atom encounters, but still approximated 12 order of magnitudes larger than Linear Scattering!
- This is the key element to improve the measurement!

