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Quantum Collapse Models
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Why Fermi-Dirac and Bose-Einstein
are distinct?




Why Fermi-Dirac and Bose-Einstein
are distinct?

WE DON’T KNOW




Beyond Standard Model...

1 Green’s general quantum field: paronic particles
4 Order 1: fermionic/bosonic fields
4 Order>1: parafermionic/parabosonic fileds

4 Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/
paraboson (and vice-versa)

4 Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
4% Non-Commutative Quantum Gravity
4 8-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)
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How about so far?

“» Ramberg and Snow (1988): ,B2/ 2 <1072
 DAMA (2009): 5°/2 < 107
# Borexino (2011): #2/2 < 107

Models scenarios implications
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all type of particles have the same degree of violation f
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X-Rays

Ejected K-shell electron Incident radiation

M-shell electron
fills vacancy

L-shell electron

K, x-ray emitted fills vacancy

K. X-ray emitted

Shells
(orbits)
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VIP group

Violation of Pauli Exclusion Principle

Open Systems Close System
testing newly injected testing spontaneous
electrons emissions
VIP
VIP-Lead BEGe
VIP-2

VIP-3 GATOR
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VIP group

Violation of Pauli Exclusion Principle

Open Systems Close System
testing newly injected testing spontaneous
electrons emissions

212 <47 107 VIP

[THIS WORK!] VIP-2

[Future] VIP-3 GATOR




X-ray tube
Veto scintillators
[
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‘trlgger Iog;c copper conductor SDDs
‘ [ i .« modules : 5 10 cm —
‘X Qh\é'mb‘er ‘ e ) .
G N\EET ~ 4 Target: Copper strips
chiller for | | e i configuration: regime
Np=iee , case (stable states: background)
~ 4 WITH CURRENT configuration (180 A): dynamic
DAQ case (PEP violation through electron capture)

il © SDD: 32 detectors by SDDs, stably kept @
—1707"! °C even with the current in Cu

4 @LNGS Underground (beneath Gran Sasso
Mou?;caln —[T): ~1400 m of rock shielding /._.52::-
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counts/10 eV
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Data Likelihood

CAC/ 10,y, &) = Poiss(" | 7"(0,y, &) X Poiss( | 0,y X %))
LG/T@
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Bayesian approach

L, 10,y, 5)p@,y, )

p@,y, 5|0, ) =
[dOdyF (-, 0.y, )p@,y, )
—— with current 26916404 s (~ 312 days) Ka Cu
1000 k —— without currrent | 27110263 s (~ 314 days)
> 750 F
Q
o
—
S~
b
c 500 |
D)
o
O
250 +
O -

Energy [eV]
21




Bayesian approach

Posterior |
'\ 2 10,9, p(@. y )_b”’///" Priors of @ and y
p@.y, S|, ) = ’ 2> PV are Gaussians:
fluctuations
around known
——— with current 26916404 s (~ 312 days) Kq Cu values
1000 k |~ without currrent | 27110263 s (~ 314 days) = . .

» Prior of & is flat,
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previous
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O _ ] ] ] ] ]

Energy [eV]
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Bayesian result

(marginalized Posterior)

(S| D", >=[p<e,y, |, )dody

Integrals with Markov Chain Monte Carlo method

. 0025 B smallest 95 interval(s)
S smallest 90 interval(s)
N smallest 66 interval(s)
S - N global mode
§ 0020 F ¢ L, [ local mode
Q
2
< 0.015 |

0.010 f

0.005

0.000 | | . I I

0 100 200 300
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Modified frequentist CLs

one-sided Likelihood Test statistic

7.5,
\t§=—2lnA( V= o 20 2)
Z@0,y, )




Modified frequentist CLs

one-sided Likelihood Test statistic

N 7

to=—2InA(5)=—-21In

/v ZL(
Profile Likelihood;

< now includes multiplicative penalties
given by experimental uncertainties: i.e.,
the priors in the Bayesian

Z@0,y, ) =L, 10,y, 5)p@,y, )
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, )
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Modified frequentist CLs

one-sided Likelihood Test statistic

N

Profile Likelihood; /

< now includes multiplicative penalties
given by experimental uncertainties: i.e.,
the priors in the Bayesian

Z@0,y, ) =L, 10,y, 5)p@,y, )

to=—2InA(5)=—-21In
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maximize the Likelihood;
l.e., the denominator is the standard
maximum Likelihood




Modified frequentist CLs

one-sided Likelihood Test statistic

\t5=—21nA( y=—2In-

Profile Likelihood; /

< now includes multiplicative penalties
given by experimental uncertainties: i.e.,
the priors in the Bayesian

Z@0,y, ) =L, 10,y, 5)p@,y, )

9,_)7, are the values that

maximize the Likelihood;
l.e., the denominator is the standard
maximum Likelihood

0, y are the values that

maximize the Likelihood with a given o ;
l.e., a set of parameters for each test-value
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Modified frequentist CLs

one-sided Likelihood Test statistic

RV 20,3, 5)

to=—2InA(5)=—-21In

Profile Likelihood; /

< now includes multiplicative penalties
given by experimental uncertainties: i.e.,
the priors in the Bayesian

Z@0,y, ) =L, 10,y, 5)p@,y, )

9,_)7, are the values that

maximize the Likelihood;
l.e., the denominator is the standard
maximum Likelihood

0, y are the values that

maximize the Likelihood with a given o ;

l.e., a set of parameters for each test-value
t ¢ distribution, given

Pcs):[ fg| S)dig Cls = Ps

5

obs 1 B pO

1 \‘ background case (i.e.,5 = 0) v
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€

<1-C.L. (i.,e.,,90% C.L. > CLg < 0.1)

X
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CLs result

Ps
1 = pg

to=—2InA(5)=—-2In <1-C.L.

Ps = [ Jlte| Sdig Cls =

tobs

Z@,5,

Computation with RooFit
CLs expected with

. —4— Observed CLs
°cr | Expected CLs - Median CLs expected in
[ Expected CLs =10 caseof & =0
oo Expected CLs +2 o but measured

0.6

0.4

0.2
line of p-value = 0.1
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CLs result

Ps
1 = pg

to=—2InA(5)=—-2In <1-C.L.

Ps = [ Jlte| Sdig Cls =

tobs

Z@,5,

Computation with RooFit
CLs expected with

. —4— Observed CLs
°cr | Expected CLs - Median CLs expected in
[ Expected CLs =10 caseof & =0
oo Expected CLs +2 o but measured

0.6

l

Background Hypothesis
as Asimov Dataset
(generated ideal dataset most likely

representing the model)
line of p-value = 0.1
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From & to #%/2

& Nint 055 1072
Nx27 * Nnew 10




From & to #%/2

This is our o'! )
N:
\‘ 2%'Nnew°ll—(r)]t°7.25x10_2
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From & to #%/2

This is our o'!

2 N;
\‘ ~ IB— y NneW llgt 7 25 X 10_2

S

|
Newly injected electrons!

Z [.At./e (= [At/e for simplicity)
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From & to #%/2

This is our o'!

2 N;
\‘ ~ 'B— y NneW llgt 7 25 X 10_2

2 4 T
Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z [.At./e (= [At/e for simplicity)
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From & to #%/2

. ' efficiency simulated:
This is our ~ [? N Nint /considered X-ray

—2

~ 5 - Npew - 0 - 7.25% 10 absorption + geometry
4 acceptance + SDDs
T efficiency

Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z [.At./e (= [At/e for simplicity)
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From & to #%/2

This | ' efficiency simulated:
'S 15 OUr ~ p? N Nint /considered X-ray

—2

~ 5 - Npew - 0 - 7.25% 10 absorption + geometry
4 acceptance + SDDs
T efficiency

Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z [.At./e (= [At/e for simplicity)

| U
[? 10 e 1
2 Nint 1At 7.25 %1072
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From & to #%/2

efficiency simulated:
2 f? Nmt . / considered X-ray
= ‘Nnew - 10 - 7.25 %10 absorption + geometry
4 acceptance + SDDs
T efficiency

This is our o'!

Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z LAt/e (= IAt/e for simplicity)

| U
(2 10 e 1
2 Nint 1At 7.25x 1072

Nt is the normalization that decides the order of magnitude of 3%/2
Let’s discuss e—atoms interaction Models!

37



Nint by Linear Scattering

D

lu 2u 3u 4u Su 6u

Through Copper Resistance,
we know the average interaction length

Nint = D/p =~ 1.95 x 10°
'Bz 10—31
2
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Nint by Close Encounters

Reservoir Diffusion

Through Diffusion-Transport theory and Copper atomic density,
we Know:

e the average time 7, on atomic encounter for a diffused electron
e the average time 1 of target crossing by an electron

Nt = Tltg =~ 4.29 X 10"
2
IB 0—43
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TO DO: a quantum N;n+?

f\.‘i)

How many interactions between Cu atomic and electron fields occur?
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Outlook

How to high sensitivity measurement in Open System?

Data Analysis
4 Bayesian
2 Well established: excellent for low statistical signals
2 Systematic uncertainty is the combination of different priors for the various factors
% CLs
2 Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very
low relative to the expectation of the background-only hypothesis: the lower/upper limit
might be anomalously low; more robust compared to the classic p-value
2z Sensible to small parameter fluctuations

Njnt modelling

4 Linear Scattering: due to phonons and lattice irregularities
Safest hypothesis
ﬁ Largely underestimation of how many interactions an electron does

 Close Encounters: a more realistic model of e-atom encounters, but still approximated
12 order of magnitudes larger than Linear Scattering!
2 This Is the key element to improve the measurement!
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Data Analysis

4 Bayesian
2 Well established: excellent for low statistical signals

7 Systematic uncertainty is the combination of different priors for the various factors

4 CLs

2 Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very
low relative to the expectation of the background-only hypothesis: the lower/upper limit
might be anomalously low; more robust compared to the classic p-value

2z Sensible to small parameter fluctuations

Njnt modelling

4r Linear Scattering: due to phonons and lattice irregularities
Safest hypothesis
ﬁ Largely underestimation of how many interactions an electron does
 Close Encounters: a more realistic model of e-atom encounters, but still approximated

12 order of magnitudes larger than Linear Scattering!
2 This is the key element to improve the measurement!

THANK YOU




