The collapse of a quantum state as a joint probability construction

Peter Morgan
Yale University
peter.w.morgan@yale.edu

November 2nd, 2022

The Hitchhiker's Advanced Guide to Quantum Collapse Models
An FQXi and Templeton Foundation supported Workshop at INFN, Frascati (by Zoom)

outline

"The collapse of a quantum state as a joint probability construction", PM, JPhysA 2022, https://doi.org/10.1088/1751-8121/ac6f2f
(1) Classical mechanics is incomplete
(2) Algebraic measurement theory for both CM and QM
(3) Construct a connection between CM and QM that is not quantization, in terms of that algebraic measurement theory
(9) How we use noncommutativity:
(i) Measurement incompatibility
(ii) "collapse" as joint measurement

[1] classical mechanics is incomplete

The usual idea:
QM Is Incomplete Because It Does Not Make Contact With CM
EPR 1935: "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"

[1] classical mechanics is incomplete

The usual idea:
QM Is Incomplete Because It Does Not Make Contact With CM
EPR 1935: "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"

Turn that around:
CM Is Incomplete Because It Does Not Make Contact With QM
2022: "Can Classical-Mechanical Description of Physical Reality Be Considered Complete?"
various no-go theorems show that CM is not able to model measurements that can be modeled by QM

Gleason, Kochen-Specker, Bell, ...

[1] classical mechanics is incomplete

The usual idea:
QM Is Incomplete Because It Does Not Make Contact With CM

Turn that around:
CM Is Incomplete Because It Does Not Make Contact With QM
2022: "Can Classical-Mechanical Description of Physical Reality Be Considered Complete?"
various no-go theorems show that CM is not able to model measurements that can be modeled by QM

Gleason, Kochen-Specker, Bell, ...
but CM has been straw-manned
We can easily add two things to CM to make it as capable as QM: noncommutativity and "quantum" noise

[2] algebraic QM and CM - noncommutative or commutative

There are abstract measurements $\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{3}, \ldots, \hat{M}_{1}+\hat{M}_{2}, \ldots, \hat{M}_{1} \hat{M}_{2}, \ldots$ linear operators \equiv random variables, spectrum \equiv sample space, $\begin{gathered}\text { noncommutative } \begin{array}{c}\text { arsociative, } \\ \text { or commutative, } \\ \text { distributive, } \\ \text { with unit }\end{array}\end{gathered}$ With no dynamics, the tradition is: $\mathrm{QM}=$ noncommutative, $\mathrm{CM}=$ commutative

A (statistical) state ρ maps measurement operators to expected measurement results

$$
\rho\left(\hat{M}_{1}\right), \rho\left(\hat{M}_{2}\right), \rho\left(\hat{M}_{3}\right), \ldots, \rho\left(\hat{M}_{1}+\hat{M}_{2}\right), \ldots, \rho\left(\hat{M}_{1} \hat{M}_{2}\right), \ldots, \quad \rho\left(\hat{M}_{1}^{n}\right), \ldots
$$

positive: $\rho\left(\hat{A}^{\dagger} \hat{A}\right) \geq 0$; normalized: $\rho(1)=1$;
von Neumann linearity: $\rho(\lambda \hat{A}+\mu \hat{B})=\lambda \rho(\hat{A})+\mu \rho(\hat{B})$
compatible with the adjoint: $\rho\left(\hat{A}^{\dagger}\right)=\rho(\hat{A})^{*} ; \quad$ where $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$

[2] algebraic QM and CM - noncommutative or commutative

There are abstract measurements $\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{3}, \ldots, \hat{M}_{1}+\hat{M}_{2}, \ldots, \hat{M}_{1} \hat{M}_{2}, \ldots$ linear operators \equiv random variables, spectrum \equiv sample space, $\begin{aligned} & \text { noncommutative } \begin{array}{c}\text { associative, } \\ \text { or commutative, }\end{array} \begin{array}{c}\text { distributive, } \\ \text { with unit }\end{array}\end{aligned}$ With no dynamics, the tradition is: $\mathrm{QM}=$ noncommutative, $\mathrm{CM}=$ commutative

A (statistical) state ρ maps measurement operators to expected measurement results

$$
\begin{array}{lll}
\rho\left(\hat{M}_{1}\right), \rho\left(\hat{M}_{2}\right), \rho\left(\hat{M}_{3}\right), \ldots, \rho\left(\hat{M}_{1}+\hat{M}_{2}\right), \ldots, \rho\left(\hat{M}_{1} \hat{M}_{2}\right), \ldots, & \rho\left(\hat{M}_{1}^{n}\right), \ldots \\
& \text { positive: } \rho\left(\hat{A}^{\dagger} \hat{A}\right) \geq 0 ; \text { normalized: } \rho(1)=1 ; & \\
& \text { von Neumann linearity: } \rho(\lambda \hat{A}+\mu \hat{B})=\lambda \rho(\hat{A})+\mu \rho(\hat{B}) & \\
& \text { compatible with the adjoint: } \rho\left(\hat{A}^{\dagger}\right)=\rho(\hat{A})^{*} ; & \text { where }(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}
\end{array}
$$

We can also use measurement operators to modulate the state ρ to give different
expected measurement results, $\rho_{A}(\hat{M})=\frac{\rho\left(\hat{A}^{\dagger} \hat{M} \hat{A}\right)}{\rho\left(\hat{A}^{\dagger} \hat{A}\right)}$,
from which the GNS-construction gives us a Hilbert space
This has so far introduced neither Planck's constant nor a dynamics: this is algebraic measurement theory in the abstract

Take classical mechanics to be an algebra of functions on phase space that has three binary operations:
addition, multiplication, and the Poisson bracket $\begin{gathered}u+v \\ u \cdot v \\ \{u, v\}\end{gathered}$

[3] classical mechanics

Take classical mechanics to be an algebra of functions on phase space that has three binary operations:
addition, multiplication, and the Poisson bracket $\begin{gathered}u+v \\ u \cdot v \\ \{u, v\}\end{gathered}$
The Poisson bracket acts with the Hamiltonian function to give
a generator of time evolution, $\hat{Z}_{H}(u)=\{H, u\}$, the Liouvillian, and we can use other functions v to give other transformations $\hat{Z}_{v}(u)$ $\left[\hat{Z}_{v}, \hat{Z}_{w}\right]=\hat{Z}_{\{v, w\}} \neq 0$ generates a noncommutative algebra

For $\hat{Y}_{w}(u)=w \cdot u,\left[\hat{Y}_{v}, \hat{Y}_{w}\right]=0$, but $\left[\hat{Z}_{v}, \hat{Y}_{w}\right]=\hat{Y}_{\{v, w\}} \neq 0$, generating a noncommutative algebra of operators with addition and composition

[3] classical mechanics

Take classical mechanics to be an algebra of functions on phase space that has three binary operations:
addition, multiplication, and the Poisson bracket $u+v$
The Poisson bracket acts with the Hamiltonian function to give
a generator of time evolution, $\hat{Z}_{H}(u)=\{H, u\}$, the Liouvillian, and we can use other functions v to give other transformations $\hat{Z}_{v}(u)$ $\left[\hat{Z}_{v}, \hat{Z}_{w}\right]=\hat{Z}_{\{v, w\}} \neq 0$ generates a noncommutative algebra

For $\hat{Y}_{w}(u)=w \cdot u,\left[\hat{Y}_{v}, \hat{Y}_{w}\right]=0$, but $\left[\hat{Z}_{v}, \hat{Y}_{w}\right]=\hat{Y}_{\{v, w\}} \neq 0$, generating a noncommutative algebra of operators with addition and composition

I suggest:
We can use the \hat{Y} 's and \hat{Z}^{\prime} 's of a more powerful CM_{+}without restriction
Instead of quantization and its not-inverses
(the Correspondence Principle, the Ehrenfest theorem, decoherence, et cetera)
we can use the same measurement theory for CM_{+}and QM

the classical simple harmonic oscillator

The Poisson bracket: $\{u, v\}=\frac{\partial u}{\partial p} \frac{\partial v}{\partial q}-\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}$
We work with the transformations generated by the Poisson bracket, not with the Poisson bracket directly

$$
\hat{Y}_{q}[u]=q \cdot u, \quad \hat{Z}_{p}[u]=\{p, u\}=\frac{\partial}{\partial q} u, \quad\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1
$$

$$
\{u, v\} \not \mathscr{H}[\hat{u}, \hat{v}]
$$

$$
\hat{Y}_{p}[u]=p \cdot u, \quad \hat{Z}_{q}[u]=\{q, u\}=-\frac{\partial}{\partial p} u, \quad\left[\hat{Y}_{p}, \hat{Z}_{q}\right]=1
$$

the classical simple harmonic oscillator

The Poisson bracket: $\{u, v\}=\frac{\partial u}{\partial p} \frac{\partial v}{\partial q}-\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}$
We work with the transformations generated by the Poisson bracket, not with the Poisson bracket directly
$\hat{Y}_{q}[u]=q \cdot u, \quad \hat{Z}_{p}[u]=\{p, u\}=\frac{\partial}{\partial q} u, \quad\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1$
$\hat{Y}_{p}[u]=p \cdot u, \quad \hat{Z}_{q}[u]=\{q, u\}=-\frac{\partial}{\partial p} u, \quad\left[\hat{Y}_{p}, \hat{Z}_{q}\right]=1$
$\hat{Y}_{H}[u]=\frac{1}{2}\left(q^{2}+p^{2}\right) \cdot u, \quad \hat{Z}_{H}[u]=\{H, u\}=\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right) u$

the classical simple harmonic oscillator

The Poisson bracket: $\{u, v\}=\frac{\partial u}{\partial p} \frac{\partial v}{\partial q}-\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}$

We work with the transformations generated by the Poisson bracket, not with the Poisson bracket directly
$\hat{Y}_{q}[u]=q \cdot u, \quad \hat{Z}_{p}[u]=\{p, u\}=\frac{\partial}{\partial q} u, \quad\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1$
$\hat{Y}_{p}[u]=p \cdot u, \quad \hat{Z}_{q}[u]=\{q, u\}=-\frac{\partial}{\partial p} u, \quad\left[\hat{Y}_{p}, \hat{Z}_{q}\right]=1$
$\hat{Y}_{H}[u]=\frac{1}{2}\left(q^{2}+p^{2}\right) \cdot u, \quad \hat{Z}_{H}[u]=\{H, u\}=\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right) u$
The Gibbs thermal state at temperature kT (in a generating function form, introducing j):

$$
\begin{aligned}
& \left.\left.\left.\left\langle{ }_{\text {к }}\right| \mathrm{e}^{\mathrm{j} \lambda \hat{Y}_{q}+\mathrm{j} \mu \hat{Y}_{p}}\right|_{\text {кт }}\right\rangle=\mathrm{e}^{-\mathrm{kT}\left(\lambda^{2}+\mu^{2}\right) / 2},\left.\quad\langle\text { кк }| \mathrm{e}^{\alpha \hat{Z}_{p}+\beta \hat{Z}_{q}}\right|_{\text {кт }}\right\rangle=\mathrm{e}^{-\left(\alpha^{2}+\beta^{2}\right) / 8 \mathrm{k} T} \\
& \text { set } \hat{Y}_{q}=\left(a+a^{\dagger}\right) \sqrt{k T}, \hat{Z}_{p}=\frac{\left(a-a^{\dagger}\right)}{2 \sqrt{k T}},\left[a, a^{\dagger}\right]=1 \text {, ensuring }\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1 \text {, and we set } a|\pi \overline{ }\rangle=0
\end{aligned}
$$

We can construct modulated, non-equilibrium states, $\frac{\left.\left.\langle K T| \hat{A}^{\dagger} \hat{M} \hat{A}\right|_{|K\rangle}\right\rangle}{\left.\left\langle{ }_{k T}\right| \hat{A}^{\dagger} \hat{A}| | \pi\right\rangle}$, and hence a Hilbert space

the classical simple harmonic oscillator

The Poisson bracket: $\{u, v\}=\frac{\partial u}{\partial p} \frac{\partial v}{\partial q}-\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}$

We work with the transformations generated by the Poisson bracket, not with the Poisson bracket directly
$\hat{Y}_{q}[u]=q \cdot u, \quad \hat{Z}_{p}[u]=\{p, u\}=\frac{\partial}{\partial q} u, \quad\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1$
$\hat{Y}_{p}[u]=p \cdot u, \quad \hat{Z}_{q}[u]=\{q, u\}=-\frac{\partial}{\partial p} u, \quad\left[\hat{Y}_{p}, \hat{Z}_{q}\right]=1$
$\hat{Y}_{H}[u]=\frac{1}{2}\left(q^{2}+p^{2}\right) \cdot u, \quad \hat{Z}_{H}[u]=\{H, u\}=\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right) u$
The Gibbs thermal state at temperature kT (in a generating function form, introducing j):

$$
\begin{aligned}
& \left.\left\langle{ }_{k T} \mid \mathrm{e}^{\mathrm{j} \lambda \hat{Y}_{q}+\mathrm{j} \mu \hat{Y}_{p}}{ }_{\text {kT }}\right\rangle=\mathrm{e}^{-\mathrm{kT}\left(\lambda^{2}+\mu^{2}\right) / 2},\left.\quad\left\langle k_{\text {kT }}\right| \mathrm{e}^{\alpha \hat{Z}_{p}+\beta \hat{Z}_{q}}\right|_{\text {kT }}\right\rangle=\mathrm{e}^{-\left(\alpha^{2}+\beta^{2}\right) / 8 \mathrm{kT}} \\
& \text { set } \hat{Y}_{q}=\left(a+a^{\dagger}\right) \sqrt{k T}, \hat{Z}_{p}=\frac{\left(a-a^{\dagger}\right)}{2 \sqrt{k T}},\left[a, a^{\dagger}\right]=1 \text {, ensuring }\left[\hat{Y}_{q}, \hat{Z}_{p}\right]=-1 \text {, and we set } a||\pi\rangle=0
\end{aligned}
$$

We can construct modulated, non-equilibrium states, $\frac{\left.\left.\left\langle_{k T}\right| \hat{A}^{\dagger} \hat{M} \hat{A}\right|_{k \pi\rangle}\right\rangle}{\left\langle{ }_{k T}\right| \hat{A}^{\dagger} \hat{A}|\overrightarrow{|K\rangle}\rangle}$, and hence a Hilbert space
Instead of trying to map $(q, p) \mathbb{H}(\hat{q}, \hat{p})$, as quantization tries to (but fails), we can map CM_{+}to $\mathrm{QM},\left(q, \mathrm{j} \frac{\partial}{\partial q}\right) \mapsto(\hat{q}, \hat{p}),\left(p, \mathrm{j} \frac{\partial}{\partial p}\right) \mapsto\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right)$

Crucially, kT is not \hbar, but it is also about an irreducible noise

quantum and thermal noise

What is the difference between quantum and thermal noise?

- \hbar has units action, whereas kT has units energy
- In QFT, the quantum vacuum is Poincaré invariant, thermal noise is not This difference of symmetry properties can be used in CM_{+}
- In CM_{+}, \hbar is an amplitude of Poincaré invariant noise kT is an amplitude of thermal noise

This gives a new reason to think that we must work with field theories, because we can only define the Lorentz group in $1+n$-dimensions

unboundedness of the Hermitian generators of time-like evolution

For the Gibbs state of the Simple Harmonic Oscillator,
\hat{Z}_{H} is anti-Hermitian, so we consider $\mathrm{j} \hat{Z}_{H}$, which is Hermitian,

$$
\begin{aligned}
\mathrm{j} \hat{Z}_{H} & =\mathrm{j}\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right)=\mathrm{j}\left(\hat{Y}_{p} \hat{Z}_{p}+\hat{Y}_{q} \hat{Z}_{q}\right) \\
& =\mathrm{j}\left(b a-b^{\dagger} a^{\dagger}\right)
\end{aligned}
$$

$$
\text { so }\langle\mathrm{k}| \mathrm{j} \hat{Z}_{H}|\mathrm{kT}\rangle=0
$$

unboundedness of the Hermitian generators of time-like evolution

For the Gibbs state of the Simple Harmonic Oscillator, \hat{Z}_{H} is anti-Hermitian, so we consider $\mathrm{j} \hat{Z}_{H}$, which is Hermitian,

$$
\begin{array}{rlrl}
\mathrm{j} \hat{Z}_{H} & =\mathrm{j}\left(p \cdot \frac{\partial}{\partial q}-q \cdot \frac{\partial}{\partial p}\right)=\mathrm{j}\left(\hat{Y}_{p} \hat{Z}_{p}+\hat{Y}_{q} \hat{Z}_{q}\right) & \\
& =\mathrm{j}\left(b a-b^{\dagger} a^{\dagger}\right) & & \text { so } \left.\langle\alpha|\left|j \hat{Z}_{H}\right| x\right\rangle=0 \\
& =\frac{1}{2}\left[\left(a-\mathrm{j} b^{\dagger}\right)^{\dagger}\left(a-\mathrm{j} b^{\dagger}\right)-\left(a+\mathrm{j} b^{\dagger}\right)^{\dagger}\left(a+\mathrm{j} b^{\dagger}\right)\right] \nsupseteq 0 &
\end{array}
$$

The Hamiltonian operator in QM is bounded below \rightarrow analytic properties; the corresponding operator in $\mathrm{CM}_{+}, \mathrm{j} \hat{Z}_{H}$, is not (though \hat{Y}_{H} is)
$C M_{+}$includes (1) noncommutativity and (2) quantum noise, however
(3) analyticity is mathematically useful but is not included

We can think of QM as an analytic form of CM_{+}
Accepting this instead of trying to fix it gives us isomorphisms, as we have seen, which is pleasantly different from quantization

reprise: classical and quantum measurement theories

If "quantum" noise pushes us to field theory, what is the role of particles?

- For your consideration: QM and QFT are formalisms about Megabytes or Terabytes of experimental records of events
- but assigning events to particles, against a noisy background, will generally be a fragile algorithm

We have to consider patterns of events globally

reprise: classical and quantum measurement theories

If "quantum" noise pushes us to field theory, what is the role of particles?

- For your consideration: QM and QFT are formalisms about Megabytes or Terabytes of experimental records of events
- but assigning events to particles, against a noisy background, will generally be a fragile algorithm

We have to consider patterns of events globally

- For an empiricist, QM is not enough about particles and systems for particle properties to be hard-wired into QM's axioms
- Particles are not hard-wired into QFT's axioms and nor should they be for classical noisy fields
- This focus connects with Bohr's insistence on classical description
"It is decisive to recognize that, however far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms." but "in classical terms" about events, not about particles and their properties
[4] Two sides of noncommutativity:
(i) measurement incompatibility for CM_{+}
(ii) "collapse" as joint measurement for QM

[4(i)] measurement incompatibility in practice

Alice and Bob both have two Avalanche PhotoDiodes, an Electro-Optic Modulator, a Random Bit Generator, and a clock; a central apparatus modulates the ground state

The time when an APD's signal rises to a higher level is recorded, and which APD it was, and what the EOM setting was: when and 2 bits This compressed record does not analyze any other signal details

Gregor gets measurement results (Alice sees almost 400,000 APD events in 10 seconds)

For over 15,000 of Alice's 400,000 events, Bob also records an event within 3 nanoseconds When Alice and Bob both record an event within 3 nanoseconds, the majority are green or yellow

Gregor gets measurement results (Alice sees almost 400,000 APD events in 10 seconds)

16 colors represent the 4 APD and EOM bits:

3.0ns

(brightness represents Alice's two bits, shapes represent Bob's two bits, red is the diagonal, ...)

Histogram for longdist 35 -Alice $+-3 \mathrm{~ns}-0-10 \mathrm{~s} \quad$ Histogram entry width is 60 ps . Highest entry is 142 events.
$E 00=-0.694$ [320+364,-2006-1780] E01 $=-0.614$
[439+374,-1658-1741]
$\mathrm{E} 10=0.708$
[1675 +
E11 $=-0.698$
$[293+181,-1463-1200]$
|E00-E10|+|E01+E11|
$=2.714$
$=2.714$
$|E 00-\mathrm{E} 01|+|\mathrm{E} 10+\mathrm{E} 11|$
$=0.090$
after simultaneous events have been identified, absolute timing information is discarded then relative timing information is also discarded to give a 4×4 table of APD\# and EOM setting, 2 bits for Alice and 2 bits for Bob

transformations and noncommutativity

We have applied various transformations to recorded experimental data
If they were innocuous, we could use commutative algebras as models of those transformations
In QM, we model Bell-violating statistics using noncommuting operators
In CM as usual, we do not have noncommuting operators

transformations and noncommutativity

We have applied various transformations to recorded experimental data If they were innocuous, we could use commutative algebras as models of those transformations
In QM, we model Bell-violating statistics using noncommuting operators
In CM as usual, we do not have noncommuting operators
In Koopman's Hilbert space formalism for classical mechanics, CM_{+}, we can use noncommutativity as needed to model contexts systematically

- For quantum fields, locality is closely associated with incompatibility because microcausality only allows noncommutativity at time-like separation

The 4×4 table of numbers we constructed could come from anywhere, so, for now, set aside discussion of locality (and this talk is about probability)

Boole 1854

It has been known since George Boole in the mid-19th Century that for some pairs of probability measures we cannot construct a joint probability measure that has that pair as marginal probability measures

It is classically understandable that such pairs can arise when measurement results come from different experimental contexts
"Measurement incompatibility" is classically understandable and classical mechanics should have a systematic response to it so we can optimize our use of the results of new experiments

We can use Wigner functions in $C M_{+}$just as we do in QM
[4] Two sides of noncommutativity:
(i) measurement incompatibility for CM_{+}
(ii) "collapse" as joint measurement for QM

For a measurement A , with sample space $\mathcal{A}=\left\{a_{m}\right\}, \hat{A}=\sum_{m} a_{m} \hat{P}_{m}$, and a measurement B, with sample space $\mathcal{B}=\left\{b_{n}\right\}, \hat{B}=\sum_{n} b_{n} \hat{Q}_{n}$,
For solo measurements, with density operator $\hat{\rho}$,
we obtain the result α_{m} with probability $\operatorname{Tr}\left[\hat{\rho}_{m}\right]$ and we obtain the result β_{n} with probability $\operatorname{Tr}\left[\hat{\rho} \hat{Q}_{n}\right]$.

For two measurements, of \mathbf{A} first, followed by B , we say that the result α_{m} "collapses" the state from $\hat{\rho}$ to the collapsed state $\hat{\rho}_{m}$,

$$
\hat{\rho}_{m}=\frac{\hat{P}_{m} \hat{\rho} \hat{P}_{m}}{\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m}\right]}=\frac{\hat{P}_{m} \hat{\rho} \hat{P}_{m}}{\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]}
$$

[4(ii)] "The collapse of a quantum state as a joint probability construction" ${ }_{2022}$ fhysA

For a measurement A , with sample space $\mathcal{A}=\left\{a_{m}\right\}, \hat{A}=\sum_{m} a_{m} \hat{P}_{m}$, and a measurement B, with sample space $\mathcal{B}=\left\{b_{n}\right\}, \hat{B}=\sum_{n} b_{n} \hat{Q}_{n}$,
For solo measurements, with density operator $\hat{\rho}$,
we obtain the result α_{m} with probability $\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]$ and we obtain the result β_{n} with probability $\operatorname{Tr}\left[\hat{\rho} \hat{Q}_{n}\right]$.

For two measurements, of \mathbf{A} first, followed by B , we say that the result α_{m}
"collapses" the state from $\hat{\rho}$ to the collapsed state $\hat{\rho}_{m}$,

$$
\hat{\rho}_{m}=\frac{\hat{P}_{m} \hat{\rho} \hat{P}_{m}}{\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m}\right]}=\frac{\hat{P}_{m} \hat{\rho} \hat{P}_{m}}{\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]}
$$

then we measure \mathbf{B} in that state, so we obtain the result α_{m} followed by β_{n} with conditional probability

$$
\underset{p\left(\beta_{n} \mid \alpha_{m}\right)}{ }=\operatorname{Tr}\left[\hat{\rho}_{m} \hat{Q}_{n}\right]=\frac{\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m} \hat{Q}_{n}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{P}_{m}\right]} .
$$

The joint probability, therefore, is

$$
p\left(\alpha_{m} \text { and } \beta_{n}\right)=\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m} \cdot \hat{Q}_{n}\right]=\operatorname{Tr}\left[\hat{\rho} \cdot \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\right] .
$$

We have $p\left(\alpha_{m}\right.$ and $\left.\beta_{n}\right)=\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m} \cdot \hat{Q}_{n}\right]=\operatorname{Tr}\left[\hat{\rho} \cdot \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\right]$,
so the positive operators $\hat{J}_{m n}=\hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}$ generate the joint probabilities $\operatorname{Tr}\left[\hat{\rho} \hat{J}_{m n}\right]$.

Instead of collapse affecting a state, we can take collapse to affect the next measurement

If $[\hat{A}, \hat{B}]=0$, then $\hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}=\hat{P}_{m} \hat{Q}_{n}=\hat{Q}_{n} \hat{P}_{m} \hat{Q}_{n} \sim$ no action
We can use $\hat{J}_{m n}$ to construct a "collapse product",
a measurement $A \bowtie B$, with sample space $\mathcal{A} \times \mathcal{B}$, even if $[\hat{A}, \hat{B}] \neq 0$

We have $p\left(\alpha_{m}\right.$ and $\left.\beta_{n}\right)=\operatorname{Tr}\left[\hat{P}_{m} \hat{\rho} \hat{P}_{m} \cdot \hat{Q}_{n}\right]=\operatorname{Tr}\left[\hat{\rho} \cdot \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\right]$,
so the positive operators $\hat{J}_{m n}=\hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}$ generate the joint probabilities $\operatorname{Tr}\left[\hat{\rho} \hat{J}_{m n}\right]$.

Instead of collapse affecting a state, we can take collapse to affect the next measurement

$$
\text { If }[\hat{A}, \hat{B}]=0 \text {, then } \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}=\hat{P}_{m} \hat{Q}_{n}=\hat{Q}_{n} \hat{P}_{m} \hat{Q}_{n} \sim \text { no action }
$$

We can use $\hat{J}_{m n}$ to construct a "collapse product", a measurement $A \bowtie B$, with sample space $\mathcal{A} \times \mathcal{B}$, even if $[\hat{A}, \hat{B}] \neq 0$

The existence of a joint probability is traditionally "classical", so we can instead use

$$
\operatorname{Tr}\left[\hat{\rho}^{\prime} \cdot \hat{P}_{m}^{\prime} \hat{Q}_{n}^{\prime}\right]=\operatorname{Tr}\left[\hat{\rho} \cdot \hat{P}_{m} \hat{Q}_{n} \hat{P}_{m}\right], \quad \text { with }\left[\hat{A}^{\prime}, \hat{B}^{\prime}\right]=0, \hat{\rho}^{\prime} \neq \hat{\rho}
$$

We can think of this as a "super-Heisenberg picture", for which unitary evolution and collapse are both applied to measurements or as the "Bohr picture", because it is rather classical

we can (and somehow must) extend this to many measurements

For a sequence of three or more measurements, we can use the sequential product, $\hat{X} \circ \hat{Y}=\sqrt{\hat{X}} \cdot \hat{Y} \cdot \sqrt{\hat{X}}$
(or more elaborate constructions of positive operators)
Collapse of the quantum state after measurement is ambiguous

$$
\begin{array}{ccc}
\rho\left(\sqrt{\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}} \hat{P}_{k}^{(C)} \sqrt{\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}}\right) & \text { or } \rho\left(\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{k}^{(C)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}\right) ? \\
(\mathrm{~A} \propto \mathrm{~B}) \propto \mathrm{C} & \neq & \mathrm{A} \mapsto(\mathrm{~B} \rightsquigarrow \mathrm{C})
\end{array}
$$

We can use any ordering, but each makes a different assertion about collapses
This is nonassociative, so, more complicated than the Heisenberg cut, we have a Heisenberg ordering ambiguity

we can (and somehow must) extend this to many measurements

For a sequence of three or more measurements, we can use the sequential product, $\hat{X} \circ \hat{Y}=\sqrt{\hat{X}} \cdot \hat{Y} \cdot \sqrt{\hat{X}}$
(or more elaborate constructions of positive operators)
Collapse of the quantum state after measurement is ambiguous

$$
\begin{array}{cc}
\rho\left(\sqrt{\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}} \hat{P}_{k}^{(C)} \sqrt{\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}}\right) & \text { or } \rho\left(\hat{P}_{i}^{(A)} \hat{P}_{j}^{(B)} \hat{P}_{k}^{(C)} \hat{P}_{j}^{(B)} \hat{P}_{i}^{(A)}\right) ? \\
(\mathrm{~A} \mathrm{~B}) \propto \mathrm{C} & \neq
\end{array}
$$

We can use any ordering, but each makes a different assertion about collapses
This is nonassociative, so, more complicated than the Heisenberg cut, we have a Heisenberg ordering ambiguity

For signal analysis, when we have many measurements at time-like separation, we can use $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{100 \ldots 000}$ with many ambiguous collapses,
or we can use $A_{1}^{\prime}, \ldots, \mathrm{A}_{100 \ldots 000}^{\prime}$, which all commute, unambiguously
which we can think of as Bohr's ideal of a classical model for compatible measurements measurements at timelike separation can give joint probabilities

"Collapse" is not
 \longrightarrow only or necessarily \longleftarrow a dynamical process

We can \longrightarrow also \longleftarrow take it to be a JOINT PROBABILITY ALGORITHM

Belavkin(1994) Quantum Non-Demolition (QND) Measurements
Tsang\&Caves(2012) Quantum-Mechanics-Free-Subsystems

"Collapse" is not

\longrightarrow only or necessarily \longleftarrow
a dynamical process

We can \longrightarrow also \longleftarrow take it to be a JOINT PROBABILITY ALGORITHM

Belavkin(1994) Quantum Non-Demolition (QND) Measurements
Tsang\&Caves(2012) Quantum-Mechanics-Free-Subsystems
An unfortunate but necessary tradeoff:
QM is effective for incompatible measurements, but less so for joint measurements
Collapse is QM's way of constructing joint measurement probabilities
CM is effective for joint measurements, but less so for incompatible measurements
The Poisson bracket is CM_{+}'s way of constructing incompatible measurements

events

An event in an APD compared with an event from throwing a coin:
We throw a coin, we see it land, we record ' 0 ' or ' 1 '
We 'throw' an APD, we record the 'signal' as ' 0 ' or ' 1 ', at GHz rates
We have engineered the avalanche thermodynamics of the APD so it is like a coin for the purposes of statistics: the 'signal' is either ' 0 ' or ' 1 '

The difference: there are many ' 0 's together and many ' 1 's together, so we can compress the data by recording only the times of transitions

events

An event in an APD compared with an event from throwing a coin:
We throw a coin, we see it land, we record ' 0 ' or ' 1 '
We 'throw' an APD, we record the 'signal' as ' 0 ' or ' 1 ', at GHz rates
We have engineered the avalanche thermodynamics of the APD so it is like a coin for the purposes of statistics: the 'signal' is either ' 0 ' or ' 1 '

The difference: there are many ' 0 's together and many ' 1 's together, so we can compress the data by recording only the times of transitions

Throws of a coin or of an APD are both used to compute relative frequencies, with the dynamics effectively abstracted away

That we can work with proberability models for throws of a coin or of an APD does not deny interest in also working with dynamical "collapse" models

classical and quantum models

With noncommutativity and "quantum" noise added into CM_{+}, we can allow ourselves, with care, to think classically

We should be systematic about contextuality and Boole's incompatibility as classically natural ideas

Noncommutativity lets us use information systematically that otherwise we might have to discard as not relevant to a new experiment

Insofar as experiments can be described using CM_{+}or QM , quantum systems can be thought of as classical ${ }_{+}$systems (and vice versa)

Quantum mechanics can be thought of as a generalized probability theory, for which the generalization is classically understandable

The difference between Quantum and Classical is subtle, but not mysterious
 if we think in terms of events and CM_{+}, not in terms of particle and system properties

An experiment behaves the same whether we use CM_{+}or QM models We might, however, choose to construct different experiments

Instead of collapse of the state, we can use Quantum Non-Demolition measurements, but we still need noncommutativity to model contextuality/incompatibility

Quantum and Classical have been

converging, in numerous ways, for decades
Generalized Probability Theories, phase space methods, contextuality, non-demolition measurement,
Koopman CM, time-frequency analysis, stochastic methods, semi-classical methods, (superdeterminism)
We will, however, continue to use quantum mechanics $\underset{\substack{\text { for its } \\ \text { andyiciuy }}}{ }$
"Classical states, quantum field measurement", Physica Scripta 2019
"An algebraic approach to Koopman classical mechanics", Annals of Physics 2020
"The collapse of a quantum state as a joint probability construction", Journal of Physics A 2022
and, ancient history, "Bell inequalities for random fields", Journal of Physics A 2006

