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Aims (achievable or not):

(i) Incorporate quantum nonlocality into general relativity.

(ii) Resolve the measurement problem using spacetime geometry.

With these aims, we propose that the preparation and measurement
of a quantum system are simultaneous events.

We investigate this proposal by modifying classical general relativity
so that there are no distinct points in the worldlines of dust particles.

This new geometry recently arose in the study of nonnoetherian
coordinate rings in algebraic geometry.



Definition
Let (M̃,g) be an orientable Lorentzian manifold. Consider a set of
dust particles on M̃ with worldlines βi ⊂ M̃. We call the set

M := (M̃ \ (∪iβi)) ∪ (∪j{βj}),

where each βj is a single point of M, an internal spacetime, or simply
spacetime. We call M̃ the external spacetime of M, and the dust
particles pointons.
Let β be the worldline of a pointon. Then

• we cannot define a tangent vector along β in M, since β is a
single point of M.

• β is a continuum of distinct 0-dimensional points in M̃, and a
single ‘1-dimensional point’ in M.

• Time does not advance along β.

Therefore, to construct an ‘internal metric’ hab at a point p ∈ M̃ from
the external metric gab, it must project out each vector v tangent to a
(geodesic) pointon worldline β ⊂ M̃ at p.



Recall the orthogonal projection of a timelike unit vector v :

[v ]ab = ga
b − vavb = δa

b − vavb.

We will describe the projection [v ]ab in the case v is null shortly...

Definition
Fix p ∈ M̃.
We call the metric gab : M̃p ⊗ M̃p → R an external metric at p.
Let v1, . . . , vn ∈ M̃p be the tangent vectors to the pointon worldlines
β1, . . . , βn at p. We define the corresponding internal metric to be the
degenerate symmetric rank-2 tensor given by the composition of
projections

h = hp = ha
b := [v1]

a
c [v2]

c
d · · · [vn]

e
b : M̃∗

p ⊗ M̃p → R.

The (internal) tangent space at p is the image of h at p,

Mp := imh = {va ∈ M̃p |ha
bvb = va} ⊆ M̃p.



Review: orientation and Hodge duals
• An orientation of a vector space V is given by fixing an ordered basis B of
V , and declaring any ordered basis to be positive (resp. negative) if it can be
obtained from B by a base change with a positive (resp. negative)
determinant.

• Let e0, . . . , em be an orthonormal basis for V . The exterior algebra∧
V ∗ := ⊕m

n=0
∧n V ∗ has basis consisting of 1 and the set of volume forms

vol(span{ej1 , . . . , ejn}) := ej1 ∧ · · · ∧ ejn ∈
∧nV ∗

with 1 ≤ j1 < · · · < jn ≤ m. In particular,

vol(V ) = e0 ∧ · · · ∧ em ∈
∧mV ∗.

The Hodge dual ⋆ψ of an element ψ ∈
∧

V ∗ is defined on the basis elements
ψ = ej1 ∧ · · · ∧ ejn by

ψ ∧ ⋆ψ = det[⟨eji , ejk ⟩]i,k vol(V ),

and extended R-multilinearly to
∧

V ∗. For example, ⋆1 = vol(V ).
Hodge duals capture orthogonal subspaces: if V = R3, then

⋆e3 = e1 ∧ e2 or ⋆e3 = −e1 ∧ e2 = e2 ∧ e1,

with the sign depending on a choice of orientation of V .
Hodge duals are pseudo-forms, that is, they depend on a choice of

orientation, since they are defined using the volume form vol(V ).



Internal 4-velocities

Consider a pointon with timelike worldline β ⊂ M̃ and 4-velocity v on M̃.
Since h(v) := ha

bvb = 0, we want to replace v with a new geometric object v̆
that is intrinsic to spacetime M and independent of M̃.

We may replace v with the Hodge dual ⋆vol(ker h) of the volume form of the
kernel ker h ⊂ M̃β(t) since each 1-form in ⋆vol(ker h) lies in the internal
tangent space Mβ(t) = im h. However, a Hodge dual is a pseudo-form, and
thus depends on a choice of orientation of the kernel ker h.

To eliminate this dependency, we allow an orientation of ker h to be freely
chosen, independent of any (non-physical) choice of orientation of M̃β(t).

Definition
The internal 4-velocity of a pointon with worldline β ⊂ M̃ and
4-velocity v is the pseudo-form

v̆a···b := oker h ⋆vol(ker h) ∈
∧
dim Mβ(t) M∗

β(t),

where oker h ∈ {±1} is a free parameter independent of any
orientation of M̃β(t). Note that the rank of v̆ changes along β ⊂ M̃
whenever the dimension of the tangent space Mβ(t) changes.



Let β ⊂ M̃ be a timelike pointon worldline with 4-velocity v , and let
e0, . . . ,e3 be a vierbein along β for which e0 = v . Fix p = β(t) ∈ M̃.
• If dimMp = 3, then the internal 4-velocity at p is

v̆abc = o0 e1 ∧ e2 ∧ e3,

where o0 ∈ {±1} is a free choice of time orientation (in the rest frame
of the pointon), independent of any orientation of M̃p.
We identify o0 with the electric charge of the pointon.
Although this is similar to the Stückelberg-Feynman interpretation of
antimatter in QFT, time does not flow along β: time does not flow backwards
along β just as it does not flow forwards, since β is a single point of
spacetime M.
• If dimMp = 1 and ker h is spanned by e0,e1,e2, then

v̆a = o0o12 e3,

where o12 ∈ {±1} is a free choice of orientation of the plane spanned
by e1 and e2. We call v̆a the spin vector of the pointon at p, and
identify o12 as spin, up ↑ or down ↓, in the e3 direction.
We then parallel transport s := v̆a along β until it is projected under h
onto a subsequent 1-dim’l tangent space Mβ(t′).



Consider a pointon with spin vector s = v̆a and worldline β ⊂ M̃ such that the
dim of the tangent space at β(0) is a local minimum along β.

Some notation: If |h(s)| ̸= 0, denote by ĥ(s) := h(s)/|h(s)| the normalization
of h(s), and denote by Mp→q the parallel transport of Mp to q along β.
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(i) As s enters Mβ(0), s is projected onto Mβ(0) by the internal metric h.

(ii) As h(s) exits Mβ(0), the reverse occurs: a unit vector s′ is chosen so that

h(s′) |h(s)| = h(s) |h(s′)| , or equivalently h(s)·s′ ≥ 0.

▷ This simplifies to ĥ(s) = ĥ(s′) whenever h(s) and h(s′) are nonzero.
▷ If h(s) = 0, then s′ is unconstrained.

If h(s) ̸= 0, then the probability that s′ is chosen is given by what we call the
Kochen-Specker conditional probability :

p(s′|h(s)) = 1
π

ĥ(s)as′
a = 1

π
ĥ(s)·s′.
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If h(s) points to, say, the north pole in the unit sphere (in the pointon’s
rest frame), then s′ will be some vector in the northern hemisphere,
with it being more likely that it is pointing to the north pole than to the
equator.

We will show that this gives a realist non-deterministic model of spin,
without physical spin superposition.
In particular, spin superposition is epistemic: a spin wavefunction
represents our knowledge about a state, but is not an actual physical
thing.



Suppose s exits a 1-dim’l tangent space Mp at p ∈ M̃,
is parallel transported along β for some time,
and then enters another 1-dim’l tangent space Mq at q.
We say the spin s of the pointon is prepared at p and measured at q.

The vector ĥβ(t)(s) sits in the unit sphere parallel transported along β,

S2
β(t) ⊂ span{e1,e2,e3} ⊂ M̃β(t).

The sphere corresponds to the spin Hilbert space H = C |↑⟩⊕C |↓⟩ by
w = (sin θ cosφ, sin θ sinφ, cos θ) ←→ |w⟩ = cos(θ/2) |↑⟩+ eiφ sin(θ/2) |↓⟩ ,

with 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

We may thus identify S2
β(t) with the Bloch sphere, and therefore

hp(s) ∈ Mp ←→ |ĥp(s)⟩ ∈ H & hq(s) ∈ Mq ←→ ⟨ĥq(s)| ∈ H∗.

Theorem
Our model is a spacetime geometric realization of the
Kochen-Specker model of spin, and therefore reproduces the Born
rule for spin wavefunction collapse:

p(hq(s)|hp(s)) = |⟨ĥq(s)|ĥp(s)⟩|2.



Photons and polarization
If v is null, then [v ]ab = gab − vavb does not project out v .

Lemma
Let v be a null vector. Any minimal orthogonal projection [v ]ab of v is
of the form

[v ]ab := gab + vav ′
b + vbv ′

a,

where v ′ is a null vector satisfying vav ′
a = −1.

The internal 4-velocities of v and v ′ are equal up to sign,

v̆ = −v̆ ′.

Theorem
A pointon with a null geodesic worldline cannot exist in isolation, but

must travel with another pointon of opposite charge. The bound state
of the two null pointons then necessarily has zero electric charge.



Consider two pointons of opposite charge with coincident worldline
β ⊂ M̃.

The pointons form a photon along β, which is on shell if β is null, and
off shell if β is timelike.

The pointons each have an ontic spin vector, denoted s±.
We impose the following:

(I) The dot product of the spin vectors is nonnegative,

s− ·s+ ≥ 0.

(II) A point p ∈ β is an endpoint of β (that is, p is an
electron-photon vertex) if and only if dimMp = 1 and

hp(s−) |hp(s+)| = hp(s+) |hp(s−)| .

This simplifies to ĥp(s−) = ĥp(s+) if hp(s−) and hp(s+) are nonzero.



Theorem
Suppose there is an electron-photon vertex at p ∈ M̃. Then

dimMp =

{
1 if the photon is on shell
2 if the photon is off shell

Consequently, full spin/polarization wavefunction collapse can only
occur at vertices for which the photon leg is on shell.

Suppose that an on-shell photon meets an electron at a point
p ∈ M̃ in a linear polarizer.
The internal tangent space Mp at p is then 1-dim’l by the theorem.
Thus, the condition ĥp(s−) = ĥp(s+) determines whether the photon
will pass by the electron with no interaction, or interact with the
electron at an electron-photon vertex.
• In the first case the photon passes through the polarizer with

s−, s+ altered by the 1-dim’l tangent space Mp.
• In the second case the photon is ‘absorbed’ by the electron.

Consequently, the condition ĥp(s−) = ĥp(s+) determines whether the
photon will pass through or be absorbed by the polarizer.



Theorem
Suppose a photon has spin vectors s−, s+, and consider the line

ℓ := span{s− + s+} ⊆ Mβ(t).

Further suppose the photon meets an electron at p ∈ M̃ for which Mp is a line.
Then an electron-photon vertex will occur at p if and only if the minimal angle
θ ∈ [−π, π] between the parallel transport of ℓ at p and the line Mp satisfies

|θ| < π
4 .

Let s−, s+ be the spin vectors of a photon, and let ϕ be the unique oriented
angle in [−π

2 ,
π
2 ] from s− to s+ in the plane P = span{s−, s+}.

We say the photon has
linear polarization ℓ = span{s− + s+}, and
left- resp. right-circular polarization if ϕ > 0 resp. ϕ < 0.

A photon thus has, at all times, both a well-defined linear polarization ℓ and
circular polarization sign(ϕ), though a measurement of one renders the other
random and unknown.



Relation to classical polarization
In terms of classical electromagnetic theory,
• ϕ = 0 corresponds to linearly polarized light;
• ϕ = ±π/2 to circularly polarized light; and
• generic values of ϕ to elliptically polarized light.

Relation to quantum polarization
Consider an on-shell photon with null worldline β and 4-velocity
v = e0 + e3.
Denote by H := C |e1⟩ ⊕ C |e2⟩ the Hilbert space with basis vectors
|ei⟩ := |span{ei}⟩; by PH its projectivization; and by [|ei⟩] the class of
|ei⟩ in PH.
For a1,a2 ∈ R, set

[|a1e1 + a2e2⟩] = a1[|e1⟩] + a2[|e2⟩] ∈ P(R |e1⟩ ⊕ R |e2⟩) ⊂ PH.

Observe that this linearity is well-defined in the projectivization PH,
though not in H itself. We may thus map polarization states in our
model noninjectively (!) to states in PH:

(ℓ, ϕ) 7→ [|ℓ, ϕ⟩] := [|s−⟩+ eiϕ |s+⟩] ∈ PH.



Under the identification

(ℓ, ϕ) 7→ [|ℓ, ϕ⟩] := [|s−⟩+ eiϕ |s+⟩] ∈ PH,
we recover the Jones vectors for both linear polarization,

|s− = s+ = e1⟩ = |H⟩
|s− = s+ = e2⟩ = |V ⟩

|s− = s+ = e1 + e2⟩ = 1√
2
(|H⟩+ |V ⟩) = |D⟩

|s− = s+ = e1 − e2⟩ = 1√
2
(|H⟩ − |V ⟩) = |A⟩

and circular polarization,

|s− = e1, s+ = e2⟩ = 1√
2
(|H⟩+ i|V ⟩) = |L⟩

|s− = e1, s+ = −e2⟩ = 1√
2
(|H⟩ − i|V ⟩) = |R⟩

|s− = −e2, s+ = e1⟩ = 1√
2
(− |V ⟩+ i|H⟩) = −i|L⟩

|s− = e2, s+ = e1⟩ = 1√
2
(|V ⟩+ i|H⟩) = i|R⟩

In the projective Hilbert space PH, the kets |L⟩ and −i|L⟩ are equal, as are
|R⟩ and i|R⟩. However, |L⟩ and i|R⟩ both correspond to ontic linear
polarization in the diagonal direction s− + s+ = e1 + e2, whereas |R⟩ and
−i|L⟩ both correspond to ontic linear polarization in the antidiagonal direction
s− + s+ = e1 − e2. Therefore the global phase of the ket, irrelevant in
quantum mechanics, is related to the photon’s ontic linear polarization in our
model.



Future directions: entanglement
Consider two photons emitted from an electron:

time

OO

We say the photons are geometrically entangled because they share
a common pointon worldline (drawn in red).
If each photon encounters a polarizer, then the two polarizers are
effectively ‘touching’, regardless of how far apart they appear in M̃,
since the pointon worldlines are single points in spacetime M.

� We expect that geometric entanglement will only approximately
reproduce quantum entanglement, and so quantum theory and our
model will differ in certain situations.



Future directions: a pointon model of the standard model
We would like to construct a composite model of all standard model particles
using only pointons and their pair creation/annihilation, just as we have done
for electrons and photons.

Proposition
A choice of time orientation o0 ∈ {±1} of R1,3, and thus of electric charge of
a pointon, corresponds to a unique su(2)C := su(2)⊕ isu(2) subalgebra of
the complexified Lorentz algebra,

so(1, 3)C ∼= su(2)C ⊕ su(2)C.

Thus, chirality = electric charge, and not spin as is usually assumed:

Corollary
If ψ ∈ C4 is an eigenspinor of γ5 with eigenvalue ±1, then ψ has electric
charge ±1; otherwise ψ is neutral. In the latter case, the projections

ψ− := 1
2 (1− γ

5)ψ =

[ ∗
∗
0
0

]
C

and ψ+ := 1
2 (1 + γ5)ψ =

[
0
0
∗
∗

]
C

are spinors with charges −1 and +1, respectively.

This significantly changes the meaning of the Dirac Lagrangian...



Recall the standard chiral decomposition of the Dirac Lagrangian:

L = ψ̄(i /∂ −m)ψ = iψ̄− /∂ψ− −mψ̄−ψ+ + (+↔ −).

The mass terms now represent

• couplings between pointons of opposite charge; and

• pair creation/annihilation of pointons of opposite charge.

Recall the diagram where an electron emits two photons:

time

OO

The photons are bound pairs of pointons of opposite charge, and
there are two points of pair creation.
In ongoing work, we are using these couplings to construct a
composite model of the standard model.



Thank you!

Spacetime geometry of spin, polarization, and wavefunction collapse
available on my website:
https://charlesbeil.wixsite.com/charlie-beil.


