Nuclear Clusters in Astrophysics

Shigeru KUBONO Center for Nuclear Study (CNS)

1. Nuclear Clusters in Nucleosynthesis

- 2. Thick target method with RI beams
- **3. Resonant** α scattering

- elastic and rearrangement

4. Direct α-transfer reactions

Fig. 24. Pictorial history of the Universe. 1. All space is filled continuously by super-dense nuclear fluid. 2. Nuclear fluid breaks up into separate drops and a series of successive fission-processes lead to the formation of nuclei of different elements. 3. The original gas breaks up into separate giant spheres: the stars. If this drawing were done correctly there would be about 10⁸¹ separate points (atoms) in each group. 4. The originally uniform

Gamow; Big-Bang Model

1947

Gamow; CNO-Cycle

HOW THE STARS USE ATOMIC ENERGY

Cycle

Jamov (47)

3

with a carbon-nucleus, we can just as well start it with a nucleus of nitrogen, or for that matter with any stable nucleus participating in the cycle. Since, in the final count,

to xH-He

Fig. 21. "Stellar reaction." Carbon-mitrogen-cycle according to Bethe and Weizsäcker.

the stellar reaction reduces to the transformation of hydrogen into helium, the catalyzing nuclei of carbon and nitrogen

Fig. 31. Why a nucleus containing several subgroups of particles does not necessarily break up into two equal parts. Of course, this figure gives only a suggestion of the actual situation in the nucleus. In fact, different subgroups in the nuclei are not separated, but penetrate through each other like members of different political parties in a country.

and 41 percent of the original mass, with the possible additional variations caused by the circumstances of collision with

Cluster Nucleosynthesis Diagram (CND)

Two Methods for cluster states in unstable nuclei

[1] Cluster resonant scattering with RI beamsThick target method with inverse kinematics

- [2] Cluster transfer reactions
 - Direct transfer reactions

Thick target method with RI beams

Direct Method with RI Beams

RIB intensities		reaction type
10 ⁴ pps	\rightarrow	Resonant scattering w/thick target method eg. ²² Mg+p
10 ⁶ pps	\rightarrow	Rearrangement reactions eg. (α, p) , (α, n) , (d, p) ,
10 ⁸ pps	\rightarrow	$(\mathbf{p},\boldsymbol{\gamma}), (\boldsymbol{\alpha},\boldsymbol{\gamma}), \ldots$

Total system development;
1. Ion source 2. Accelerator

 SuperECR
 Modify central region

3. Beam transport 4. Production target
5. Separator - Multipole element

Thick target method for resonant scattering; A+p

¹²C+p Resonances

Resonance Parameters

CRIB; Low-Energy In-Flight RI Beam Separator at CNS

¹³N+p experiment (¹⁴O resonances)

$^{14}N(^{3}He,t)^{14}O E_{L}=420 MeV$

(RCNP / Negret 05)

17

¹³N+p result (¹⁴O resonances)

Summary of ¹³N+p

Resonant α-scattering

- ²¹Na(α , p) reaction -

$E_{\rm ex}~({\rm MeV})$	J^{π}		Γ_{α} (keV)		Γ_w (keV)	γ_{α}^{2} (MeV)		
			This study	Ref. [18]		This study	Ref. [9]	Ref. [13]
10.24	3/2-	2	4 (<9)		72	0.089	0.227	0.05
10.34	5/2-	2	19 ± 4		94	0.32		0.09
10.60	7/2+	3	10 ± 3	30	15	1.1	0.640	0.084
11.06 ± 0.04	$5/2^+$ (3/2 ⁺ , 7/2 ⁺ , 9/2 ⁺)	3	32 ± 20		41	1.25		
11.29	9/2+	3	35 ± 4		63	0.89		
(11.59) ^a	$(7/2^{-})$	4	270 ($\Gamma_n = 580$)		(7)			
12.63 ± 0.04	$(3/2^+ [6], 5/2^+, 7/2^+, 9/2^+ [22])^b$	3	33–400°	275	330	0.20-1.3		22
13.03	9/2-	4	140^{-80}_{+110}		58	2.5		

TABLE I Best-fit resonance parameters of 11 B determined by the present w

. .

Scientific Motivation

Gamma ray observation of ²²Na

²²Na ($t_{1/2}$ =2.6 yr) is one of the target nuclei of gamma-ray observation

- Try to observe this gamma rays (1.275 MeV) to learn nucleosynthesis in novae and other explosive phenomena

□ Ne-E problem in presolar grains

Origin of isotopic anomaly; high enrichment of ²²Ne in meteorites In the Orgueuil meteorite, ${}^{22}Ne/{}^{20}Ne > 0.67$ (terrestrial abundance: ${}^{22}Ne/{}^{20}Ne \approx 0.10$)

Study the αp-process

Very few (α,p) reactions were investigated directly. Need experimental study.

Problem with the thick target method

Extensive Active Target ; GEM-MSTPC Target/Detector System

R-matrix analysis on ²¹Na(α , α)

α reduced width

$E_r (MeV)$	Γ_{α} (MeV)	$\Gamma_p (\text{MeV})$	\mathbf{J}^{π}	
3.32 ± 0.07	~ 0.15	~ 0.1	$(3/2^+)$	~ 47.5
4.08 ± 0.08	0.15 - 0.19	0.04 - 0.15	$7/2^{-}$	66.7 - 84.4
$4.59 \ ^{+0.09}_{-0.06}$	0.12 - 0.19	0.02 - 0.08	$(3/2,5/2)^{+}$	25.8 - 40.9
$5.34 \ ^{+0.07}_{-0.06}$	0.17 - 0.19	0.02 - 0.08	$5/2^{-}$	17.3 - 19.4
$5.98 \ ^{+0.07}_{-0.09}$	0.22 - 0.24	0.01 - 0.08	$3/2^{-}$	15.1 - 16.4

α-cluster

resonances ! 28

Direct α**-transfer** reactions

(α ,p), (α ,n) reactions at low energies

Direct α-Transfer Reaction

Direct Reaction Theory; Distorted Wave Born Approximation (DWBA)

 $\mathbf{A} + \mathbf{a} \rightarrow \mathbf{B} + \mathbf{b} + \mathbf{Q}$ (e.g. ¹²C(³He,d)¹³N*)

$$\frac{d\sigma}{d\omega}^{DWBA} = \frac{M_{aA}M_{bB}}{(2\pi\hbar^2)^2} \frac{k_b}{k_a} |T|^2$$

The transition amplitude T (散乱振幅) is

$$T = \int \chi_{bB}^*(k_b, r) < \varphi_b \varphi_B | V | \varphi_a \varphi_A > \chi_{aA}(k_a, r) dr$$

distorted wave of the exit channel T reaction interaction distorted wave (歪曲波) of the incident channel

32

The Form factor can be written as

$$< \varphi_{b} \varphi_{B} | V | \varphi_{a} \varphi_{A} > = < d^{13} N^{*} | V_{dp} |^{3} He^{12} C > = V_{dp} (r_{dp}) < \phi_{p12C} | \phi_{13C^{*}} >$$

Thus

Spectroscopic factor (分光学因子)

α-Reduced Width and the α-Spectroscopic Factor

Breit-Wigner one level formula : (Indirect method) $\sigma(E) = \pi \frac{\hbar^2}{2\mu E} \frac{2J+1}{(2S_1+1)(2S_2+1)} \frac{\Gamma_{\alpha}\Gamma_n}{(E-E_p)^2 + (\Gamma/2)^2}$ $\Gamma_{\alpha} = 2 \frac{k_{\alpha}R}{|F_{\ell}(k_{\alpha}R)|^{2} + |G_{\ell}(k_{\alpha}R)|^{2}} \gamma_{\alpha}^{2} \qquad ; \alpha\text{-width} \\ ; \text{(observed)}$ $R = r_0 (A_1^{1/3} + A_2^{1/3})$ α -transfer $\gamma_{\alpha}^2 = \frac{3\hbar^2}{2\mu R^2} S_{\alpha}$; α -reduced width reactions $S_{\alpha} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{EXP}} / \left(\frac{d\sigma}{d\Omega}\right)_{\text{DWBA}}$; Spectroscopic factor

Application of Direct Transfer Reactions

- 1. Reaction mechanism
 - Direct process ?
 - •Coupling to other channels
 - •Multi-step processes
 - Compound nucleus formation
- 2. **Optical potentials**
- 3. **Bound states** (Interaction)
 - Interaction separation energy method
 - •Bound state wave functions

Elastic Scattering of ¹⁸O on ¹⁸⁴W and ²⁰⁸Pb

L=0 and 2 transitions of ⁴⁰Ca(p,d)³⁹Ca

Two-step processes in ⁴⁰Ca(p,d)³⁹Ca

 $|{}^{40}Ca(g.s.,0^+) > \approx 0.9 | 0p - 0h > +0.4 | 2p - 2h > +0.1 | 4p - 4h > Gerace, Green(NPA93)$

⁴⁰Ca(p,d) to states at 3.63(9/2⁻) and 2.77(7/2⁻)

³⁸ (Kubono, '75)

Two-step processes in ⁴⁰Ca(p,d)³⁹Ca

α -Transfer Reactions on ¹³C for S_{α}

¹³C(⁶Li,d) ¹⁷O $E_{\rm L}(^{13}{\rm C}) = 8.5 {\rm MeV}$ $E_{L}(^{6}Li)=60 \text{ MeV}$ $(E_{cm}=41.0 \text{ MeV})$ $(E_{cm}=2.7 \text{ MeV})$ 45 5/2* 6.36 1/2 6.3592 ¹³C+α 6.36 1/2.+ 5.94 1/2 60 40 150 5.9MeV 4.55 50+ Group ¹³C(⁶Li,d)¹⁷O 35 4.14 /.202 3/2 7.166 5/2 5.732 (5/2_) 5.697 7/2 ¹⁶O+n 3.84 5/2 3.06 8.200 3/2 $E_{Lab}(^{6}Li) = 60 \text{ MeV}$ 1/2 3.842 5/2 30 5.216 9/2 $\theta_{Lab} = 30^{\circ}$ stuno₂₀ Counts/Channel 5.2MeV 4.553 3/2 Group 0.87 1/2+ 0.000 5/2⁺ 3.84 5/2 6.862 (5/2 1/2⁺ $J^{\pi} = 5/2^{+}$ 5.085 3/2+ ¹⁷O 3.055 1/2 0.000 0⁺ 4.55 3/2 356 0.871 1/2⁺ 15 $0.87 \\ 1/2^+$ 50 g.s. 5/2⁺ 0 10 3.06 1/2 5 0 12 2 6 8 10 4 500 1500

Channel Number(Momentum)

1000

(Johnson, 2006)

Energy(MeV)

Angular Distributions of ¹³C(⁶Li,d)¹⁷O

$^{12}C(^{6}Li,d)^{16}O E_{6Li}=20 MeV$

(E_{cm}=13.3 MeV)

Fusion cross sections changes drastically at a few – several MeV/u by

$$\sigma_{fusion}(E_{cm}) \propto 1/E_{cm}$$

whereas c.s. of quasi-elastic processes increases instead.

¹²C(⁷Li,t)¹⁶O E_{7Li} =38 MeV

Cluster Nucleosynthesis Diagram (CND)

SUMMARY

- 1. α-cluster states play a crucial role in nuclear astrophysics.
- 2. α-cluster states can be investigated by resonant α scattering with the thick target method, and by direct α- transfer reactions.
- **3.** Direct α transfer reactions need to be applied with cares, especially for the reaction mechanism.
- 4. Cluster Nucleosynthesis Diagram (CND) is a good guide for understanding nucleosynthesis flow after hydrogen burning in star evolution. 46