

Underground Laboratories

Marialuisa Aliotta

School of Physics and Astronomy - University of Edinburgh Scottish Universities Physics Alliance

Nuclear reactions between charged particles

energy available: from thermal motion

during static burning: kT << E_{coul}

 $T \sim 15x10^6 \text{ K} \text{ (e.g. our Sun)} \Rightarrow kT \sim 1 \text{ keV}$

reactions occur through TUNNEL EFFECT

<u>Gamow peak:</u> energy of astrophysical interest where measurements should be carried out

kT <<
$$E_0$$
 << E_{coul}
 10^{-18} barn < σ < 10^{-9} barn

major experimental challenges

Experimental approach:

measure $\sigma(E)$ over as wide a range as possible, then <u>extrapolate</u> down to $E_0!$

M

what is measured in the laboratory: reaction yield

$$Y = N_p N_t \sigma \epsilon$$

 N_p = number of projectile ions typically, stable beam intensities 10¹⁴ pps (~100 μ A q=1+)

 N_t = number of target atoms typically, 10^{19} atoms/cm²

 σ = reaction cross section (given by nature) typically, 10^{-15} barn (1 barn = 10^{-24} cm²)

 ϵ = detection efficiency typically, 100% for charged particles ~1% for gamma rays

Y = 0.3-30 counts/year

challanges

low cross sections \rightarrow low yields \rightarrow poor signal-to-noise ratio

Sources of background:

Beam induced:

- reactions with impurities in the target
- reactions on beam collimators/apertures

non beam-induced:

- interaction of cosmic muons with detection setup
- charged particles from natural background
- neutron-induced reactions

maximising the yield requires:

- improving "signal"
 - high beam currents

BUT limitations: charge confinement

heating effects on target

- thicker, purer targets

BUT limitations: exponential drop of cross section

high purities difficult + expensive

- reducing "noise" (i.e. background)
- combination of both

Main Sources of Background:

- > natural radioactivity (mainly from U and Th chains and from Rn)
- > cosmic rays (muons, ^{1,3}H, ⁷Be, ¹⁴C, ...)
- > neutrons from (a,n) reactions and fission

underground location

+ low U and Th environment

major advantages:

in all cases where background is dominated by cosmic rays
poor signal-to-noise ratio at surface level (e.g. neutron-induced background)

limited, though not negligible, advantages:

in all cases where background is mostly beam-induced background arising from laboratory environment

reactions of interest to astrophysics:

radiative capture: (p,γ) or (α,γ)

transfer reactions: (p,α) or (α,p)

entrance channel energy is low outgoing particle's and/or gamma-ray's energies dominated by reaction Q-value:

The LUNA facility

LUNA (Laboratory Underground for Nuclear Astrophysics)

Radiation	LNGS/surface
muons	10 ⁻⁶
neutrons	10 ⁻³
photons	10-1

The (present) LUNA Collaboration

Italy (INFN Gran Sasso, Napoli, Genova, Padova, Milano, Torino)

Germany (Bochum, Dresden)

Hungary (Debrecen)

UK (Edinburgh)

M

γ-ray background at Gran Sasso

with lead shielding

much higher suppression factor than with shielding at surface lab

NB shielding becomes even more efficient underground

LUNA – Phase I: 50 kV accelerator (1992-2001)

investigate reactions in solar pp chain

90° analysing magnet

ean is

duoplasmatronion sourceon 50kV platform

entirely built by students!

LUNA (use the Moon to study the Sun)

LUNA – Phase I: 50 kV accelerator (1992-2001)

2006/01/19 18419

investigate reactions in solar pp chain

C. Casella et al.: Nucl. Phys. A706 (2002) 203-216

@ lowest energy:

 σ ~ 20 fb \rightarrow 1 count/month

@ lowest energy:

 σ ~ 9 pb \rightarrow 50 counts/day

only two reactions studied directly at Gamow peak

LUNA – Phase II: 400 kV accelerator (2002-2006)

- > solar neutrino flux from CNO reduced by factor 2
- ➤ age of globular cluster increased by 1Gy!!

Reactions measured so far at or near Gamow region:

Limitations

- produces & accelerates H and He beams
- > no deuteron beams allowed
- > reactions producing neutrons not allowed
- > only <u>direct kinematics</u> studies are possible

many critical reactions for astrophysics **BEYOND** current capabilities

!! new underground facilities are very much needed !!

key open questions

where and how are <u>heavy elements</u> produced?
neutron sources [¹³C(a,n)¹⁶O and ²²Ne(a,n)²⁶Mg] for s-process

AGB stars nucleosynthesis, Novae ejecta, Galaxy composition?
 Ne, Na, Mg and Al nucleosynthesis [(p,g) and (p,a) reactions]

Late stages of stellar evolution

¹²C+¹²C

importance: evolution of massive stars

astrophysical energy: 1-3 MeV

minimum measured E: 2.1 MeV (by γ-ray spectroscopy)

Strieder, J. Phys. G35 (2008) 14009

extrapolations differ by 3 orders of magnitude

large uncertainties in astrophysical models of stellar evolution and nucleosynthesis

options for improvements of surface measurements: exhausted

underground measurements required

Neutron sources for heavy elements

 13 C(α ,n) 16 O

importance: neutron source for *s-process* in AGB stars

astrophysical energies: 130 - 250 keV

minimum measured E: 270 keV

(s-process = slow neutron-capture for heavy elements nucleosynthesis)

options for improvements of surface measurements: exhausted

underground measurements required

Neutron sources for heavy elements

 22 Ne(α ,n) 25 Mg

importance: s-process in AGB stars

astrophysical energies: 400 - 700 keV

minimum measured E: ~680 keV

current status

options for improvements of surface measurements: exhausted

underground measurements required

Other examples

abundances of Ne, Na, Mg, Al, ... in AGB stars and nova ejecta affected by many (p,γ) and (p,α) reactions

shaded areas indicate order of magnitude(s) uncertainties

Iliadis et al. ApJ S134 (2001) 151; S142 (2002) 105; Izzard et al A&A (2007)

Underground laboratories around the world

LUNA at Gran Sasso (Italy) ONLY underground NA laboratory in the WORLD

New projects: Andes, Argentina-Chile;

INO, Saha Institute, Kolkata, India

projects in Europe

Boulby (UK)
Gran Sasso (Italy)
Canfranc (Spain)
Felsenkeller (Germany)

projects elsewhere

DIANA (US)
Andes (Chile/Argentina)
China
India

European Laboratory for Experimental Nuclear Astrophysics

- commercial potash and salt mine
- Cleveland Potash Ltd
- deepest mine in Britain (850m to 1.3km deep)

why is Boulby *ideal* for Nuclear Astrophysics?

deep mine 1100 m (2800 m.w.e.)	→ ~10 ⁶ reduction in CR + uniform shielding
salt environment: low in U/Th	Jower n- and γ-background
no space constraints	→ no <i>interference</i> issues
easy access for equipment	vertical shafts+ underground transport
mine management support	→ infrastructure & services

BUT: following recent major cuts in the UK, proposal for feasibility study not funded

Background comparison

Canfranc Laboratory
LUNA MV Project
Felsenkeller Laboratory

Canfranc Laboratory

The Canfranc Railway Tunnel

- > neutron background measurements underway
- ➤ Lol to be submitted in October 2011
- > pre-engineering design by end of 2011
- > permit for excavation expected by 2012

LUNA MV

LUNA MV upgrade

see Alessandra Gugliemetti's talk for further details

Fe

Shallow-underground option (47 m of rock overburden) in Dresden (Germany)

existing γ-analytics facility, established 1982 since 2009, also scientific use by HZDR and TU Dresden background ~3 times worse than deep underground currently looking for used accelerator

courtesy: D. Bemmerer

M

γ-background comparison in a "traveling" HPGe detector, combining rock overburden with active shield (muon veto)

courtesy: D. Bemmerer

possible site for an accelerator

- > Tunnels exist since the 1850s, currently used for storing sausage skins, truck parking, etc
- Startup possible with a used accelerator (ideally 3 MV, ion source on HV terminal)
- Open to international users
- May be part of a staged approach helping deeper-underground projects gather speed

courtesy: D. Bemmerer

The DIANA Laboratory

Dual/Dakota/DUSEL Ion Accelerator for Nuclear Astrophysics

DIANA design

E=10keV-3.0MeV I=0.5mA to 10mA ρ =10¹⁹prt/cm²

p, α, HI beams100 x LUNA luminosity

Yield and count rate estimate

Beam intensity: 10mA, target density 10¹⁸ g/cm² gas jet

increase in luminosity → up to 3 orders of magnitude improvement compared to LUNA courtesy: M Wiescher

The ANDES Laboratory

The ANDES Laboratory

background:

- > strategic importance to increase exportation to Asian market
- > Brazil and Argentina export by boat from Chile
- > existing passes cannot cope with increasing demands (particularly in winter)
- > alternatives based on low-altitude passes currently looked for
- > tunnel construction expected in 2012 at Agua Negra Pass

The ANDES Laboratory features

pass located at 3700m of altitude - relatively remote "hot" tunnel $\approx 30-40\circ$ C deepest point at $\approx 1750m$ depth (\approx Frejus-Modane) 4500-4800 mwe ideal depth for an Underground Laboratory

main rock: andesite density ~2.7 g/cm3 low radioactivity

3 big halls:

hall 1: (20x25x50) m³

hall 2: same size, 3-4 floors

hall 3: pit φ 15-20 m, 20m depth

Linear tunnel for interferometer/accelerator

Total cost ≈ 10MU\$D

- + 2 external labs
- + experiments cost

courtesy: M Wiescher

scientific involvement

ion source

ECR, RF, duoplasmatron, sputtering high intensity (several 100s mA) beams (p, d, ^{3,4}He, C, N, O, Mg, Al, ... isotopes)

accelerator

high long-term stability small energy spread (~10 eV) acceleration voltage accuracy ~ 10⁻⁴

targets development

windowless (re-circulated) gas target systems high purity solid state targets

detector development

gamma-ray arrays (Compton suppressed)
low-background neutron detectors
silicon detectors for low-energy "heavy ion" detection

<u>theoretical approaches</u> for low-energy nuclear reactions R-matrix, direct capture, nuclear structure

Summary & Outlook

- few nuclear reactions studied at/near Gamow peak (LUNA)
- > many key reactions remain beyond current capabilities
- > new underground laboratories needed and fully endorsed by NA community
- > initiatives in Europe currently pursued (call for interest recently circulated)
- > several initiatives taking place around the world
- > potential for major breakthrough in the field

