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. Nuclear reactions between charged par

charged particles =% Coulomb barrier energy available: from thermal motion
v Coulomb potential during static burning: kT <<E__,
T~ 15x10°K (e.g.ourSun) = kT~ 1keV
EcouI ~ lez W1 [\ Ekin ~ kT (keV)
(MeV) R
o r :
reactions occur through TUNNEL EFFECT
nuclear | &
well . .
\ =) tunneling probability |P o exp(-2mtn)
Maxwell-Boltzmann tunnelling through . . .
Jistribution coulomb barrier Gamow peak: energy of astrophysical interest
| exp(-E/KT) oc exp(-+E /€ ) where measurements should be carried out
:-T%
S KT << Ep << E
<y Gamow peak
2 1018 barn < ¢ < 10 barn
\

o - major experimental challenges
kT E, energy



Experimental approach:

measure o(E) over as wide a range as possible, then extrapolate down to E!
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what is measured in the laboratory: reaction yield

Y=N N, ot

N, = number of projectile ions
typically, stable beam intensities 104 pps (~100 uA g=1+)

N, = number of target atoms
typically, 10%° atoms/cm?

O = reaction cross section (given by nature)
typically, 101> barn (1 barn = 10 cm?)

¢ = detection efficiency
typically, 100% for charged particles
~1% for gamma rays

Y = 0.3-30 counts/year




. challanges

low cross sections = low yields = poor signal-to-noise ratio

Sources of background:

Beam induced:

- reactions with impurities in the target
- reactions on beam collimators/apertures

non beam-induced:

- interaction of cosmic muons with detection setup
- charged particles from natural background

- heutron-induced reactions



maximising the vield requires:

III

» improving “signa

- high beam currents

BUT limitations: charge confinement
heating effects on target

- thicker, purer targets

BUT limitations: exponential drop of cross section

high purities difficult + expensive

» reducing “noise” (i.e. background)

» combination of both




Main Sources of Background:

» natural radioactivity (mainly from U and Th chains and from Rn)

» cosmic rays (muons, 13H, ’Be, 14C, ...)

» neutrons from (a,n) reactions and fission
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underground location

+ low U and Th environment

major advantages:

in all cases where background is dominated by cosmic rays

poor signal-to-noise ratio at surface level (e.g. neutron-induced background)

limited, though not negligible, advantages:

in all cases where background is mostly beam-induced

background arising from laboratory environment




O aside...

reactions of interest to astrophysics:
radiative capture: (p,y) or (c.,Y)
transfer reactions: (p,a) or (a,p)

entrance channel energy is low

outgoing particle’s and/or gamma-ray’s energies dominated by reaction Q-value:
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The LUNA facility

LUNA (Laboratory Underground for Nuclear Astrophysics)

Gran Sasso - Italy Laboratori Nazionali del Gran Sasso
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The (present) LUNA Collaboration
Italy (INFN Gran Sasso, Napoli, Genova, Padova, Milano, Torino)
Germany (Bochum, Dresden)

Hungary (Debrecen)
UK (Edinburgh)



] -ray background at Gran Sasso
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NB shielding becomes even more efficient underground
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LUNA — Phase I:

50 kV accelerator (1992-2001)

90° analysing
magnet

duoplasmatron
ion source
on 50kV platform

50 kV accelerator

investigate reactions in solar pp chain

entirely built by students!
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- LUNA (use the Moon to study the Sun

LUNA — Phase I: 50 kV accelerator (1992-2001)
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only two reactions studied directly at Gamow peak
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LUNA — Phase Il: 400 kV accelerator (2002-2006)

CNO cycle
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» solar neutrino flux from CNO reduced by factor 2
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» age of globular cluster increased by 1Gy !!
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Reactions measured so far at or near Gamow region:
*He(*He,2p)*He  'H(p,y)*He '*PN(p,y)*>0O 3He(*He,y)’Be **Mg(p,y)*°Al

2H(*He,y)Li 7O(p,y)*8F 7O(p,a)**N ...

Limitations

» produces & accelerates H and He beams

» no deuteron beams allowed

» reactions producing neutrons not allowed

» only direct kinematics studies are possible

many critical reactions for astrophysics BEYOND current capabilities

Il new underground facilities are very much needed !!




key open questions

» fate of massive stars (supernovae explosions)?

carbon burning [**C+'2C] in advanced stages of stellar evolution

Crab Nebula SN 1054

» where and how are heavy elements produced?

» AGB stars nucleosynthesis, Novae ejecta, Galaxy composition?

Ne, Na, Mg and Al nucleosynthesis [(p,g) and (p,a) reactions]




= Late stages of stellar evolution

importance: evolution of massive stars
12c412¢ )
astrophysical energy: 1—-3 MeV
minimum measured E: 2.1 MeV (by y-ray spectroscopy)
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- Neutron sources for heavy elements

130(,n) %0 importance:
il astrophysical energies: 130 - 250 keV
minimum measured E: 270 keV

neutron source for s-process in AGB stars

(s-process = slow neutron-capture for heavy elements nucleosynthesis)
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Neutron sources for heavy elements

importance: s-process in AGB stars
22Ne(o,n)**Mg P P

astrophysical energies: 400 - 700 keV

minimum measured E: ~680 keV
current status
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. Other examples
abundances of Ne, Na, Mg, Al, ... in AGB stars and nova ejecta

affected by many (p,y) and (p,a) reactions

shaded areas indicate order of magnitude(s) uncertainties
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Il underground measurements are necessary !!




Underground laboratories around the world

LUNA at Gran Sasso (ltaly) ONLY underground NA laboratory in the WORLD

1 Hemestake
Depmn,. maw e 4160

2 Sowlan
Deth,. mom e 2040

3 Wipp
Depih, mma: 1580

4 SNOLAB
Dagtty, mom s, 5990

5 Baksan
Depin. maa: 4700

} 7 Cantranc
Dopth, mwa: 2450

® Gran Sasso
Depthe. mow s 3030

8 Frejun/Modane
Depth, mowa: 4150

2 Doulby
Dagtn, mne 2805 v

10 Kamioha
Depith, mw s 2060

courtesy: M Wiescher
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projects in Europe

Boulby (UK)

Gran Sasso (ltaly)
Canfranc (Spain)
Felsenkeller (Germany)

projects elsewhere

DIANA (US)

Andes (Chile/Argentina)
China

India




= Boulby Mine

E‘l o » commercial potash and salt mine
» Cleveland Potash Ltd
European Laboratory for » deepest mine in Britain

Experimental Nuclear Astrophysics (850m to 1.3km deep)




pll Boulby

why is Boulby ideal for Nuclear Astrophysics?

deep mine 1100 m (2800 m.w.e.) - ~10° reduction in CR
+ uniform shielding
salt environment: low in U/Th —> lower n- and y-background
no space constraints - no interference issues
easy access for equipment —> vertical shafts

+ underground transport

mine management support - infrastructure & services

BUT: following recent major cuts in the UK, proposal for feasibility study not funded




= Background comparison

v-ray background comparison
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Canfranc Laboratory
LUNA MV Project
Felsenkeller Laboratory




- Canfranc Laboratory

The Canfranc Railway Tunnel

> neutron background measurements underway
> Lol to be submitted in October 2011
> pre-engineering design by end of 2011

> permit for excavation expected by 2012




N LUNA MV

LUNA MV upgrade

see Alessandra Gugliemetti’s talk for further details




O Felsenkeller

Shallow-underground option (47 m of rock overburden) in Dresden (Germany)

existing y-analytics facility, established 1982

since 2009, also scientific use by HZDR and TU Dresden
background ~3 times worse than deep underground
currently looking for used accelerator

courtesy: D. Bemmerer



" A
v-background comparison in a “traveling” HPGe detector,
combining rock overburden with active shield (muon veto)
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possible site for an accelerator

Access from outside
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> Tunnels exist since the 1850s, currently used for storing sausage skins, truck parking, etc

> Startup possible with a used accelerator (ideally 3 MV, ion source on HV terminal)
> Open to international users

> May be part of a staged approach helping deeper-underground projects gather speed

courtesy: D. Bemmerer



The DIANA Laboratory




N DIANA
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= DIANA design

courtesy: M Wiescher

E=10keV-3.0MeV p, a, Hl beams

1=0.5mA to 10mA 100 x LUNA luminosity
p=10%prt/cm?




Count Rate (counts/minute)

Yield and count rate estimate

Beam intensity: 10mA, target density 108 g/cm? gas jet

3He(a,y)’Be 15N(p,y)e0
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increase in luminosity = up to 3 orders of magnitude improvement

compared to LUNA

courtesy: M Wiescher



The ANDES Laboratory




- The ANDES Laboratory

background:

> strategic importance to increase exportation to Asian market

> Brazil and Argentina export by boat from Chile

> existing passes cannot cope with increasing demands (particularly in winter)
> alternatives based on low-altitude passes currently looked for

> tunnel construction expected in 2012 at Agua Negra Pass
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- The ANDES Laboratory features

pass located at 3700m of altitude - relatively remote

“hot” tunnel =30 - 400 C

deepest point at = 1750m depth (= Frejus-Modane) 4500-4800 mwe
ideal depth for an Underground Laboratory

main rock: andesite
density ~2.7 g/cm3
low radioactivity

3 big halls:

hall 1: (20x25x50) m?3

hall 2: same size, 3-4 floors

hall 3: pit ¢ 15-20 m, 20m depth

Linear tunnel for interferometer/
accelerator

Total cost = 10MUSD
+ 2 external labs
+ experiments cost

courtesy: M Wiescher



scientific involvement

» ion source
ECR, RF, duoplasmatron, sputtering
high intensity (several 100s mA) beams
(p, d, 3*He, C, N, O, Mg, Al, ... isotopes)

» accelerator
high long-term stability
small energy spread ( ~10 eV)
acceleration voltage accuracy ~ 10

» targets development
windowless (re-circulated) gas target systems
high purity solid state targets

» detector development
gamma-ray arrays (Compton suppressed)
low-background neutron detectors
silicon detectors for low-energy “heavy ion” detection

» theoretical approaches for low-energy nuclear reactions
R-matrix, direct capture, nuclear structure




Summary & Outlook

» few nuclear reactions studied at/near Gamow peak (LUNA)

> many key reactions remain beyond current capabilities

> new underground laboratories needed and fully endorsed by NA community
> initiatives in Europe currently pursued (call for interest recently circulated)

> several initiatives taking place around the world

> potential for major breakthrough in the field







