Nuclear astrophysics at LUNA: recent results

Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano, ITALY

Laboratory Underground Nuclear Astrophysics

Outline:

- -The Luna Experiment: most important results
- On-going measurements and future perspectives

Hydrogen burning

Produces energy for most of the life of the stars

 $4p \rightarrow ^{4}He + 2e^{+} + 2v_{e} + 26.73 \text{ MeV}$

LUNA MV 2012 ?

LUNA 1 (1992-2001) 50 kV

> LUNA 2 (2000→...) 400 kV

Laboratory for Underground Nuclear Astrophysics

LNGS (shielding = 4000 m w.e.)

Radiation LNGS/surface

Muons Neutrons 10⁻⁶ 10⁻³

CNO Cycle

T>1.6 10⁷ K M>1.1 Solar masses

 $^{14}\text{N}(p,\gamma)^{15}\text{O}$ is the slowest reaction and determines the rate of energy production

Its cross section influences:

CNO neutrino flux→ solar metallicity
 Globular cluster age

Globular cluster age

¹⁴N(p,γ)¹⁵O: the bottleneck of the CNO cycle

High resolution measurement (2004)

Solid target + HPGe detector

- single γ transitions
- Energy range 119-367 keV
- summing had to be considered

High efficiency measurement (2006)

Gas target+ BGO detector

- high efficiency
- total cross section
- Energy range 70-230 keV

 $S_0(LUNA) = 1.61 \pm 0.08 \text{ keV b}$

CNO neutrino flux decreases of a factor ≈ 2 Globular Cluster age increases of 0.7 – 1 Gyr

3 He(4 He, γ) 7 Be

John Bahcall e M. H. Pinsonneault, astroph/0402114v1, 2004:

The rate of the reaction ${}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Be}$ is the largest nuclear physics contributor to the uncertainties in the solar model predictions of the neutrino fluxes in the p-p chain. In the past 15 years, no one has remeasured this rate; it should be the highest priority for nuclear astrophysicists."

$$\Phi(^{8}B) \sim (1+\delta S_{11})^{-2.73} (1+\delta S_{33})^{-0.43} (1+\delta S_{34})^{0.85} (1+\delta S_{17})^{1.0}$$

$$(1+\delta S_{e7})^{-1.0} (1+\delta S_{1,14})^{-0.02}$$
where fractional uncertainty $\delta S_{11} \equiv \Delta S_{11}/S_{11}(0)$

³He(
$$\alpha,\gamma$$
)⁷Be(e, ν) ⁷Li*(γ)⁷Li
E γ = 478 keV
E γ = 1586 keV + E_{cm} (DC \rightarrow 0);
E γ = 1157 keV + E_{cm} (DC \rightarrow 429)
E γ = 429 keV

Luna measurement: both techniques and accuracy of 4-5%

³He recirculating gas target p=0.7mbar
 Si-monitor for target density measurement (beam heating effect)
 Collimated HPGe detector to collect γ ray at 55°
 0.3 m³ Pb-Cu shield suppression five orders of magnitude below 2MeV
 Removable calorimeter cap for offline ⁷Be counting

Spectra

Activation

Prompt

S₃₄ (LUNA) =0.567±0.018±0.004 keV b

in Solar fusion cross sections II: arXiv:1004.2318v3 based on LUNA and successive measurements: S₃₄= 0.56 ± 0.02 (exp) ± 0.02 (model) keV b

Uncertainty due to S_{34} on neutrinos flux: $\Phi(^{8}B)$ 7.5% \rightarrow 4.3% $\Phi(^{7}Be)$ 8% \rightarrow 4.5%

Evidence that ²⁶Al nucleosynthesis is still active (SN and NOVAE) ²⁶Al produced before the formation of the solar system

Precise measurement of a resonance → accurate evaluation of the target stoichiometry Enriched targets may contain oxygen Study of "high" energy resonances with natural and enriched Mg targets of :

 $^{25}Mg(p,\gamma)^{26}Al(E_r=304 \text{ keV})$: Confirmed NACRE result but reduced uncertainty to 4%. This resonance will serve as normalization standard for lower-energy resonances

 $^{24}Mg(p,\gamma)^{25}Al(E_r=214 \text{ keV})$: lower resonance strength with respect to previous literature data. Strong direct capture component. Need of a re-analysis with R-matrix

 $^{26}Mg(p,\gamma)^{27}AI(E_r=326 \text{ keV})$: apparent discrepancy in literature data solved. Resonance strength measured with higher accuracy

²⁵Mg(p,γ)²⁶Al

198 keV resonance HPGe γ-ray spectra: single transitions

198 keV resonance BGO γ -ray spectra

92 keV resonance BGO γ -ray spectra

LUNA present program

In progress

to be completed presumably by 2014

BBN: production of the lightest elements (D, ³He, ⁴He, ⁷Li, ⁶Li) in the first minutes after the Big Bang

Apart from ⁴He, uncertainties are dominated by systematic errors in the nuclear cross sections

The ⁶Li case

Constant amount in stars of different metallicity (\rightarrow age) 2-3 orders of magnitude higher than predicted with the BBN network (NACRE)

The primordial abundance is determined by: ²H(α,γ)⁶Li producing almost all the ⁶Li ⁶Li(p, α)³He destroying ⁶Li \rightarrow well known

Available data

The beam-induced background

- neutron background generated by $d(\alpha,\alpha)d$ Rutherford scattering followed by $d(d,n)^{3}He$ reactions

Experimental set-up

Reduced gas volume: pipe to minimize the path of scattered ²H and hence to minimize the $d(d,n)^{3}$ He reaction yield

- HPGe detector in close geometry: larger detection efficiency and improved sygnal-to-noise ratio

- Silicon detectors to measure ²H(²H,p)³H

LUNA measurement (preliminary)

230 h at 400 keV, 285 h at 280 keV

LUNA MV Project

April 2007: a Letter of Intent (LoI) was presented to the LNGS Scientific Committee (SC) containing key reactions of the He burning and neutron sources for the s-process: ${}^{12}C(\alpha,\gamma){}^{16}O$ ${}^{13}C(\alpha,n){}^{16}O$ ${}^{22}Ne(\alpha,n){}^{25}Mg$ (α,γ) reactions on ${}^{14,15}N$ and ${}^{18}O$

These reactions are relevant at higher temperatures (larger energies) than reactions belonging to the hydrogenburning studied so far at LUNA

Higher energy machine \rightarrow 3.5 MV single ended positive ion accelerator

Possible location at the "B node" of a 3.5 MV single-ended positive ion accelerator

 In a very low background environment such as LNGS, it is mandatory not to increase the neutron flux above its average value

 $^{13}C(\alpha, n)^{16}O$

a beam intensity: 200 μA Target: ¹³C, 2 10¹⁷at/cm² (99% ¹³C enriched) Beam energy(lab) ≤ 0.8 MeV

 $^{22}Ne(\alpha,n)^{25}Mg$

a beam intensity: 200 µA Target: ²²Ne, 1 10¹⁸at/cm² Beam energy(lab) ≤ 1.0 MeV

from ${}^{12}C(\alpha,\gamma){}^{16}O$ $^{13}C(\alpha, n)^{16}O$

a beam intensity: 200 µA Target: ¹³C, 1 10¹⁸at/cm² (¹³C/¹²C = 10⁻⁵) Beam energy(lab) ≤ 3.5 MeV

- Maximum neutron production rate : 2000 n/s
 - Maximum neutron energy (lab) : 5.6 MeV

Geant4 simulations for neutron fluxes just outside the experimental hall and on the internal rock walls

First results

Round Table "LUNA-MV at LNGS" 10th-11th February 2011 http://luna.lngs.infn.it/luna-mv

35 scientists from Europe, USA and Asia:

•Status of similar projects in Europe and USA

- •Description of the LUNA MV project (site, machine, shielding,...)
- ·Astrophysical importance of the envisaged reactions
- •Experimental open problems
- Discussion

Two documents:

A) Proceedings

B) Brief description of the project and list of "Working packages" to be distributed for adhesions (Aliotta, Fraile, Fulop , Guglielmetti)

Laboratory for Underground Nuclear Astrophysics

Round Table: "LUNA - MV at LNGS" February 10-11, 2011

STATUS OF SIMILAR UNDERGROUND PROJECTS

- Status of the Canfranc project, Luis FRAILE
- o The Bulby mine: an opportunity for underground nuclear astrophysics, Maria Luisa ALIOTTA
- The Dresden Felsenkeller: A shallow underground option for accelerator based nuclear astrophysics, Daniel BEMMERER
- Status of the DIANA project, Alberto LEMUT

GENERAL DESCRIPTION OF THE LUNA-MV PROJECT

- The LUNA-MV project: from 2007 to now, Alessandra GUGLIELMETTI
- A Megavolt Accelerator for Underground Nuclear Astrophysics, Matthias JUNKER
- The Site for LUNA-MV at LNGS, Paolo MARTELLA
- The Shielding of the LUNA-MV site, Davide TREZZI

PHYSICS CASES FOR LUNA-MV

- The ¹²C(α,γ)¹⁶O reaction from the astrophysical point of view, Oscar STRANIERO
- The rates of neutron realeasing reactions in He-burning phases and their astrophysical consequences, Maurizio BUSSO
- $\circ~$ The seeds of the S-process: experimental issues in the study of $^{13}C(\alpha,n)^{16}O$ and $^{22}Ne(\alpha,n)^{25}Mg,$ Paolo PRATI
- \circ Towards the Gamow peak of the $^{12}C(\alpha,\gamma)^{16}O$ reaction, Roberto MENEGAZZO
- Stellar helium burning studied at LUNA-MV. The ¹⁴N(α,γ)¹⁸F, ¹⁵N(α,γ)¹⁹F, ¹⁶O(α,γ)²⁰Ne, and ¹⁸O(α,γ)²²Ne, Daniel BEMMERER

DISCUSSION AND LAYOUT OF A POSSIBLE LOI EXTENDED TO OTHER GROUPS

Workpackages towards European Underground Accelerator

Next-generation underground laboratory for Nuclear Astrophysics Executive summary

This document originates from discussions held at the LUNA MV Roundtable Meeting that took place at Gran Sasso on 10-11 February 2011. It serves as a call to the European Nuclear Astrophysics community for a wider collaboration in support of the next-generation underground laboratory. To state your interest to contribute to any of the Work Packages, please add your name, contact details, and WP number under *International Collaboration*.

WP1: Accelerator + ion source

WP2: Gamma detectors

WP3: Neutron detectors

WP5: Solid targets

<u>WP6: Gas target</u>

WP7: Simulations

WP8: Stellar model calculations

Name	Institution	Work Package(s)
Carlos Abia	University of Granada	WP7
Maurizio Busso	Dept Physics & INFN-PG (Italy)	WP7
Gianpiero Gervino	INFN Torino	WP3 - WP3
Grigor Alaverdyan	Yerevan State University, Radio Physics Faculty, Yerevan 0025, Armenia	WP7: Stellar model calculations
Pierre Descouvemont	Universite Libre de Bruxelles	WP7
Sergio Cristallo	INAF - Teramo	WP7
Luciano Piersanti	INAF - Teramo	WP7
Sean Paling	Boulby Mine (UK)	No indication
Johan Nyberg	Uppsala University	WP2, WP3, WP6
Yi Xu	Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles, 1050, Brussels, Belgium	WP6 and WP7
D. Bemmerer et al.	HZDR	WP5
D. Bemmerer , Z. Elekes et al.	HZDR	WP6
Andrea Lavagno	Politecnico di Torino	WP7
Lian Gang	China Institute of Nuclear Energy	WP6
Andreas Zilges	Köln University	WP2
Sam Austin	NSCL/Mich St Univ	WP7
Antonino Di Leva	Napoli University	WP6
Gianluca Imbriani	Napoli University	WP2, WP7
Lucio Gialanella	Seconda Università di Napoli and INFN Napoli	WP6

THE LUNA COLLABORATION Laboratori Nazionali del Gran Sasso A.Formicola, M.Junker Helmoltz-Zentrum Dresden-Rossendorf, Germany M. Anders, D. Bemmerer, Z.Elekes INFN, Padova, Italy C. Broggini, A. Caciolli, R.Menegazzo, C. Rossi Alvarez INFN, Roma 1, Italy C. Gustavino Institute of Nuclear Research (ATOMKI), Debrecen, Hungary Zs.Fülöp, Gy. Gyurky, E.Somorjai, T. Szucs Osservatorio Astronomico di Collurania, Teramo, and INFN, Napoli, Italy O. Straniero Ruhr-Universität Bochum, Bochum, Germany C.Rolfs, F.Strieder, H.P.Trautvetter Seconda Università di Napoli, Caserta, and INFN, Napoli, Italy F. Terrasi Università di Genova and INFN, Genova, Italy P.Corvisiero, P.Prati Università di Milano and INFN, Milano, Italy M.Campeggio, A.Guglielmetti, D. Trezzi Università di Napoli ''Federico II'', and INFN, Napoli, Italy A.di Leva, G.Imbriani, V.Roca Università di Torino and INFN, Torino, Italy G.Gervino University of Edinburgh M. Aliotta and D. Scott