High Energy Response of TIGRESS detectors

Ritesh Kshetri

Saha Institute of Nuclear Physics, India

Former Postdoc at Simon Fraser University and TRIUMF, Canada

How does a composite detector work ?

1 Me	Case 1 eV absorbed.	Crystal 1 Crystal 3	Crystal 2 Crystal 4	Prog. Part. Nucl. Phys Nucl. Instr. Meth. A 4 Case 2 700 keV absorbed & 300 keV scattered to crystal 2.	. 28 (1992) 495 32 (1990) 90
Case	Time uncorrelated sum of data from four crystals (Single Crystal mode)		rom T ode) f	Time correlated sum of data from four crystals (Addback mode)	
	only single hit events o full energy peak	only single hit events contribute to full energy peak (FEP)		single & multiple hit events contribute to FEP	
1	Fully absorbed			Fully absorbed	
3	Both 300 & 700 keV γ-rays observed. Single event contributes to background.		ound.	300 + 700 = 1 MeV γ-ray Event Reconstructed	

Measure of enhancement by addback is given by:

Addback Factor at $E_{\gamma} = E_0$, $F = \epsilon_{addback} / \epsilon_{sc}$

No. of single + multiple fold events that contribute to FEP at $E_{\gamma} = E_0$

_ -----

No. of single fold events that contribute to FEP at $E_{\gamma} = E_0$

TRIUMF ISAC Gamma Ray Escape Suppressed Spectrometer

Current configuration – 12 detectors, Full configuration – 16 detectors.

32-Fold Segmented HPGe Clover Detector

Four HPGe crystals close-packed in a four-leaf clover geometry. 32-fold segmentation of the outer contacts provide position resolution with waveform analysis by fast digitizers. The enhanced position sensitivity achieved through the segmentation of the crystals allows for accurate Doppler correction of gamma-ray spectra. TRIUMF ISAC Gamma Ray Escape Suppressed Spectrometer Each detector is shielded by a 20-fold segmented escape suppression shield - front shield (8) + side catcher (8) + back catcher (4).

In order to provide the best possible peak-to-total ratio and detection efficiency for a particular experiment, an element of flexibility has been incorporated into the array's design.

Forward or high efficiency configuration: d = 11 cm, no front shield.

Backward or optimised peak-to-total configuration: d = 14.5 cm.

For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about the full energy peak (FEP) efficiency for high energy gamma-rays. For example, the transition from the first 2⁺ excited state to the ground state in ¹⁶O has an energy of 6917 keV. However, suitable radioactive sources that emit gamma-rays of energies greater than ~ 3.5 MeV are not easily available. For such cases, the response of gamma spectrometers at higher energies are usually determined from simulation data.

Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable of detecting single 10 MeV gamma-rays with an absolute detection efficiency of 1.5% for the optimized peak-to-total configuration of the array [NIMA 570 (2007) 437].

It is essential to experimentally check the simulation results for energies above 3.5 MeV.

How to characterise - preparing radioactive source through decay

Up to 1.4 MeV ¹⁵²Eu – 122 keV <E_Y< 1408 keV

Up to 3.5 MeV

56Co – 847 keV < E_{γ} < 3548 keV

Up to 8 MeV

β– Decay of ¹¹Be ($\tau_{1/2}$ = 13.8 sec)

	γ -ray energy	Relative Intensity
	692.31(10)	0.097(3)
	1185.98	< 0.011
MeV	1171.31(30)	0.740(40)
	2124.473(27)	100.000
E ₁ < 3548 KeV	2346.64	< 0.007
	2895.30(40)	0.227(8)
	2957.10	< 0.01
	3532.34	< 0.007
	4443.90(50)	0.153(8)
	4665.90 (40)	$5.115\ (140)$
	5018.98(40)	$1.316\ (46)$
	5851.47 (42)	6.006(240)
	6789.81(50)	$12.618\ (620)$
	7282.92	< 0.17
Phys. Rev. C 26 (1982) 1176	7974.73	5.342(400)

Experimental set up

* 16.5 MeV ¹¹Be on thick Au target

* Seven fully suppressed TIGRESS detectors at 14.5 cm (4 x 90° + 3 x 135°)
- 27 % solid angle coverage

* 1 mm thick annular DSSD of BAMBINO

- downstream at 1.94 cm
- used for detection of electrons in coincidence with the gamma-rays from the TIGRESS detectors.

* Master Trigger – Ge singles OR Ge-Si coinc

Addback spectra

Effect of coincidence & suppression

- use of BAMBINO detector helped in minimizing the contribution of the continuum arising from the interaction of high energy electrons (up to 11.5 MeV) with the germanium detectors.

<u>Cluster</u> : volume ~ 2000 cm³, d = 25.7 cm

TIGRESS : volume ~ 930 cm³, d = 14.5 cm

<u>Clover</u> : volume ~ 470 cm³, d = 22 cm

Euroball cluster (NIMA 381 462) **TIGRESS clover (present work)** Eurogam type clover (NIMA 556 226)

Summary and Conclusion

The gamma-ray response of an array of seven TIGRESS detectors has been studied for photon energies up to 8 MeV using a radioactive ¹¹Be beam and standard radioactive sources.

Measurements of absolute full energy peak detection efficiency and addback factor have been performed as a function of gamma-ray energy. The absolute efficiency at 1332 keV and 7974 keV are found to be 3.94(1)% and 0.69(6)%, respectively. These measured efficiencies will be useful for performing data analysis and planning gamma-ray spectroscopy experiments for energies above 3.5 MeV.

Ratio of escape peak area to full energy peak area have been extracted. The addback process along with the active suppression reduce the escape peak areas, but they cannot eliminate these peaks.

Comparisons have been made between TIGRESS and similar composite detectors.

Simon Fraser University

C. Andreoiu, D.S. Cross, N. Galinski

TRIUMF

M. Djongolov, G.C. Ball, A.B. Garnsworthy, G. Hackman, J.N. Orce, C. Pearson, S. Triambak, S.J. Williams

University of Toronto

T. Drake

University of Guelph

C.E. Svensson

Colorado School of Mines

D. Smalley