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Detect & Localize Point Sources

Objective: Given such a 𝛾-ray map, can a neural network detect and find the precise 

location of  point sources? 
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4FGL Catalog; 8 years of  Data, 5064 Sources

Ref: Fermi-LAT, 4FGL

ApJS 247, 33 (2020)
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4FGL-DR2: Brief  Info

• Incremental version of  4FGL catalog. 

• Based on 10 years of  data, ranging from 50 MeV to 1 TeV. 

• Data analysis scheme is identical to 4FGL. 

• Dataset consists of  > 5700 sources. More than 3200  identified/associated sources 

are of  active galaxies of  ‘Blazar’ class and ~250 are pulsars. 

• Sources are tested with 3 types of  spectral models 

• Power-Law (PL)

• Log Parabola (LP)

• Power-law with exponential cut-off  (PLEC) 

[4FGL-DR2; 2005.11208]
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Training Data Generation: Supervised Machine Learning

• To learn a mapping from input to output based on example input-output pairs. ‘Supervised Learning’ 

• Create set of  full sky simulations (sky-maps) with source properties based on the distribution in 4FGL-

DR2. 

• Include BLLacs, FSRQs, PWN/SPP/SNR (LP distribution) and PSR (PLEC distribution).  

• Consider yearly photon data over  the 10 year period [2008-2018]. 

• The full data analysis pipeline is a two step process. Localization and Classification. 

• Use variability of  the blazars as another information. For Classification purpose only. 
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Training Data Generation: Using Full Detector Potential

• To generate robust training data we exploit fully the detector potential. 

• Treat front and back 𝛾-ray events separately with appropriate IRFs. 

• Photons that convert in front section have better angular resolution. 

• Bin the photon counts in 6 different energy bins starting from 300 MeV to 1 TeV. 

• The spatial resolution of  the sky-maps increases with increasing energy 

• Per-photon angular resolution ∼ 5∘ at 100 MeV, improving to 0.8∘ at 1 GeV and 0.1∘ ≥
20 GeV [LAT].
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Robust Training Data 

• We are using raw photon data to precisely localize and classify point sources using deep learning. 

• ‘Proof  of  Principle’: already published using a simpler dataset (AutoSourceID: A&A, arxiv: 

2103.11068). 

• 2 Source classes (AGN, PSR) and same  resolution for all energy bins.

• Develop a robust data analysis pipeline:  

• Will help us to understand source detection possibility using our method  by comparing with DR2 

Catalog.

7Hands on Extreme Univ., Sexten 2022, July



Localization and Classification: Pipeline

• Split the sky into 10∘ × 10∘ patches and after 

localization cut 1∘ × 1∘ patch around source 

for classification. 

• Random patches (locations of  sky) are used 

for training data. Reduces the possibility of  

localization network ‘learning’ the 

background rather sources.

• Also tested different background models.  

• Convolution of  Specified source model, raw photon counts 

with IRF. [Fermitools]

• Separate network for localization and classification.
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Types of  Computer Vision Tasks (Preliminary) 



Training Data & Localization Network 

• Images of  full sky data in 6 energy bins [0.3 GeV - 1 TeV].  

• Step1: Implement U-Net like algorithm. Segmentation task.

• Each pixel is assigned with a label score (≈1, pixel belongs to region around sources, ≈0, otherwise).

• Step2: Apply K-Means algorithm

• Group the pixels in a cluster and center of  cluster is source location. (Lon, Lat)   
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Original U-NET

Multi-Input U-NET Structure

Multi Input U-Net: Able to handle images of  different resolution. 

Produces a binary mask (1: Source, 0: Rest), Same resolution as the highest resolution input. 
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Performance Evaluation: Metrics

TP: True Positive; Network Identifies a point source present in simulation.

FP: False Positive; Network falsely identifies a point source not present in simulation.

FN: False Negative; Network fails to identify a point source present in the simulation.

General performance metric in Deep Learning: 

Purity or Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
;         Completeness or Recall =   

𝑇𝑃

𝑇𝑃+𝐹𝑁

How do the precision and recall change as a function of  photon flux? 
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Performance Evaluation on Simulated Data

Comparison of  network performance with Front Only (F) and 2 times Front Data. (2F)

Vertical Blue Line: LAT 4FGL catalog threshold. 2 × 10−12 erg cm−2s−1; [from 4FGL paper]

Assuming power law with index -2, photon flux: 2 × 10−10 photons cm−2 s−1 above 100 MeV. 
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Localization Algorithm Performance:

Accurate Location Prediction: Our Results are based only on 𝛾-ray Data.  

Comparison with Original 4FGL Catalog ; Source and Associated Source
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Angular Distance (deg.)

Angular Distance (deg.)



Performance on the Real Data: 

• Create count cubes (‘gtbin’) of  same size for different energy bins from the detected photons (‘Front’). 

• Use the best model (based on the performance on the simulated/training data) to generate location of  

source centers. 

• Number of  detected sources depends on the threshold (binary classification of  source and 

background). 

• For all the results shown here, threshold is set to 0.2.  
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Performance on the Real Data: 

• Create count cubes (‘gtbin’) of  same size for different energy bins from the detected photons (‘Front’). 

• Use the best model (based on the performance on the simulated/training data) to generate location of  source centers. 

• Number of  detected sources depends on the threshold (binary classification of  source and background). 

• For all the results shown here, threshold is set to 0.2.  

• Compare predicted location lists (Latitude,  Longitude) with DR2 catalog locations (‘GLAT’, ‘GLON’). 

• Keep the nearest neighbor within 0.5° : True Positive. 

• Association distance is under discussion. Stable results within 0.3° for high significance sources. 

• Iterative search: If  a source is associated once, it is removed from the predicted source list.  
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Performance on the Real Data: ‘Signif_ Avg’ 

• Ratio of  True Positives from 

UNEK and DR2 catalog are 

shown for different 

significance of  4FGL source 

detection. 

• Comparison with the 

‘Associated’ list: All sources 

above significance 40 were 

detected.  

• 𝜎 < 10; the detection ratio 

drops down to ~59% for 

associated list.    
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Performance on the Real Data: Latitude Dependence 

• True Positive ratio at different 

Latitudes for full DR2 catalog

and ‘Associated’ catalog. 

• We also check the effect of  

removing the ‘c’ sources 

• Sources coincident with 

interstellar clump. 

• 200 ‘c’ sources in full 

DR2 catalog. 

• Association rate drops 

significantly near galactic 

plane. 
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DR2 Catalog: True Positives (using UNEK): False Negatives (𝜎 > 10):
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DR2 Catalog (Flag==0): True Positives (using UNEK): False Negatives (𝜎 > 10):



Summary: 

• Develop an automatic gamma-ray data analysis pipeline (only using gamma-ray photon data) for source detection, 

localization using Deep Neural Network. 

• Results shown here are before classification results. (Ongoing) 

• Exploit full detector potential & various source properties to simulate realistic representation of  the 𝛾-ray sky. 

• Include various sources and also yearly data with variability information. 

• List of  detected and localized sources (UNEK) were compared with DR2 catalog. 

• Beyond 𝜎 > 10, association ratio is 90% onwards. 

• Below 𝜎 < 10, association ratio drops to 48%  for full catalog; 59% for associated catalog.   

• Total number of  detected sources with threshold 0.2: ~9200. Possibility of  multi-wavelength association?
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Summary: 

• Develop an automatic gamma-ray data analysis pipeline (only using gamma-ray photon data) for source detection, localization using 

Deep Neural Network. 

• Results shown here are before classification results. (Ongoing) 

• Exploit full detector potential & various source properties to simulate realistic representation of  the 𝛾-ray sky. 

• Include various sources and also yearly data with variability information.

• List of  detected and localized sources (UNEK) were compared with DR2 catalog. 

• Beyond 𝜎 > 10, association ratio is 90% onwards. 

• Below 𝜎 < 10, association ratio drops to 48%  for full catalog; 59% for associated catalog.   

• Total number of  detected sources with threshold 0.2: ~8014. Possibility of  multi-wavelength association?
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Summary: Coming Soon..

Snapshot of  a Comparison Table/New Catalog

‘LAT’, ‘LON’: Predicted source location from our algorithm. 

‘Probability’: with 0.2 threshold for background and source pixel classification. 

Once we obtain the classification results, we will add a column with ‘Fake’ tag.  

UNEK 4FGL
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Summary: Predicted Sources: UNEK
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Application on Optical Images

• Work in Collaboration with Optical & ML group in Netherlands. Published in A&A (arXiv: 2202.00489)

• Performance far superior than state of  the art source detector. 

• Automatically reject satellite motion, flares, cosmic-rays. 
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Application on Optical Images: Example of  Transfer Learning

• Model trained on MeerLicht

data, tested against Hubble 

Telescope Data. 

• Without any fine tuning, the 

model already recovers many 

sources. 

• Robustness of  the model: 

Different backgrounds, 

different PSFs. 0.11 arc 

seconds for HST to 2-3 arc 

seconds for MeerLicht. 
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Backup



Localization Algorithm Performance:

How accurate the performance is ?

Calculate Haversine Distance between
True location and Predicted location.

𝜆1, 𝜆2
Longitudes of  point 1, 2𝜆1, 𝜆2

𝜙1, 𝜙2
Latitudes of  point 1, 2

Calculated using Astropy Module.
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Nearest Neighbor Distance



Simulation: Mock Catalog Generation

• Spectral shape:  

• Log Parabola 

•
𝑑𝑁

𝑑𝐸
= 𝐾

𝐸

𝐸0

−𝛼−𝛽 log
𝐸

𝐸0

• AGNs (BLLac, FSRQ, 

PWN, SPP)

• Distribution in Sky: 

• BLLac, FSRQ : Uniformly 

distributed over the whole 

sky.

• PSR, PWN/SPP : Uniform 

distribution in longitude 

• Latitude distribution peaks 

at the plane.

𝐸100 = න
100

1𝑒5𝑑𝑁

𝑑𝐸
× 𝐸

Integrated flux-density
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Simulation: Mock Catalog Generation

• Spectral shape:  

• PLEC

•
𝑑𝑁

𝑑𝐸
= 𝐾

𝐸

𝐸0

−Γ
exp(𝑎 (𝐸0

𝑏 − 𝐸𝑏)); 

PSR. 

• Distribution in Sky: 

• PSR: Double Gaussian for LAT. 
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Variability of  Blazars: 
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F1- Data New
F1-F0 Data Old
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‘PSR’; 2017-2018 (1-2 GeV)
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Classification Network: Training Strategy 

• Dealing with class-imbalance data-set. Training data dominated by BLL and FSRQs. 

• Use augmentation; Weighted Loss. 

• To incorporate variability of  sources effectively we use 4D data structure (6, 6, 10, 6). 

• Arrange yearly data with decreasing counts.  Max count on top. 

• Mean of  10 years data subtracted from the yearly counts. Variability component dominates. 

(Width, Height, Year, Energy)
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Training Data Generation: Variability of  Blazars

• Variability: Considered Yearly Flux/Mean Flux (10 years) 

• All Blazars are likely variable, but fainter sources contain large statistical uncertainty. 

• Consider yearly photon measurement and sum over 10 years to get total photon count. 
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Traditional Method

• Build a model of  interstellar emission 

(IEM) using various templates. 

• Find sources using maximum 

likelihood. 

• Test Statistic 𝑇𝑆 = 2 log
𝐿

𝐿0
, how 

significantly a source emerges from 

the background. 

• For 4FGL catalog, requirement is set 

as  𝑇𝑆 > 25

[ICRC 2019, I. Moskalenko, G. Johannesson; GALPROP]
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Classification Network 

• Classification Network is a 3D 
CNN.

• Input shape (W, H, 10, 6).

• 10 years, 6 energy bins.

• Class-imbalance problem

• Localized sources are then acting as inputs for a 

separate classification network. 

• Cut a box around the predicted location and feed 

into the network. 
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Classification Performance (Under Progress) 

• with 4D data structure and 3D 

Convolution. Treating time and 

energy separately. 

• with arranging max count on top 

considering yearly photon counts. 

• with subtracting the mean (of  10 year 

counts) from yearly data. 

• Still in progress with some fine 

tuning of  the network. 

Performance improvement
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